
Probabilistic Model Checking for
Feature-oriented Systems⋆

Clemens Dubslaff, Christel Baier, and Sascha Klüppelholz

Faculty of Computer Science
Technische Universität Dresden

Dresden, Germany
{dubslaff,baier,klueppelholz}@tcs.inf.tu-dresden.de

Abstract. Within product lines, collections of several related products
are defined through their commonalities in terms of features rather than
specifying them individually one-by-one. In this paper we present a com-
positional framework for modeling dynamic product lines by a state-
based formalism with both probabilistic and nondeterministic behaviors.
Rules for feature changes in products made during runtime are formal-
ized by a coordination component imposing constraints on possible fea-
ture activations and deactivations. Our framework supports large-scaled
product lines described through multi-features, i.e., where products may
involve multiple instances of a feature.

To establish temporal properties for products in a product line, ver-
ification techniques have to face a combinatorial blow-up that arises
when reasoning about several feature combinations. This blow-up can
be avoided by family-based approaches exploiting common feature be-
haviors. We adapt such approaches to our framework, allowing for a
quantitative analysis in terms of probabilistic model checking to reason,
e.g., about energy and memory consumption, monetary costs, or the re-
liability of products. Our framework can also be used to compute strate-
gies how to trigger feature changes for optimizing quantitative objectives
using probabilistic model-checking techniques.

We present a natural and conceptually simple translation of product lines
into the input language of the prominent probabilistic model checker
Prism and show feasibility of this translation within a case study on
an energy-aware server platform product line comprising thousands of
products. To cope with the arising complexity, we follow the family-based
analysis scheme and apply symbolic methods for a compact state-space
representation.

1 A preliminary version of this paper appeared at Modularity’14 [23].
⋆ The authors are supported by the DFG through the collaborative research cen-
tre HAEC (SFB 912), the cluster of excellence cfAED, Deutsche Telekom Stiftung,
the ESF young researcher groups IMData (100098198) and SREX (100111037), the
Graduiertenkolleg QuantLA (1763), the DFG/NWO-project ROCKS, and the EU-
FP-7 grant MEALS (295261).

2 C. Dubslaff et al.

1 Introduction

The concept of product lines is widely used in the development and marketing of
modern hardware and software. In a product line, customers can purchase a base
system extendible and customizable with functionalities, also called features.
Following the definition for product lines in the software domain (also called
software product lines), a product line can also be understood as the collection of
all features itself and rules how the features can be combined into products [14].
The rules for the composition of features are typically provided using feature
diagrams [35,7], where the features and their hierarchical structure are given
by a tree-like structure. For describing large product lines supporting several
instances of features, feature diagrams withmulti-features come into place, where
cardinality ranges are annotated to features indicating how many of them can
be instantiated towards a valid feature combination [18].

Feature combinations are often assumed to be static, i.e., some realizable fea-
ture combination is fixed when the product is purchased and is never changed
afterwards. However, this does not faithfully reflect adaptations of modern prod-
ucts during their lifetime. For instance, when in-app purchases are placed or
when a free trial version of a software product expires, features are activated or
deactivated during runtime of the system. Similarly, components of a hardware
system might be upgraded to more powerful or energy-efficient ones or are nec-
essarily replaced due to a hardware failure. In all these situations, the products
change but still belong to the same product line. Such product lines capable of
modeling adaptations after deployment are called dynamic product lines [29], for
which the design of specification formalisms is an active and emerging field in
product line engineering [31,22,45,19].

Verification of Product Lines

To meet requirements in safety-critical parts of the features or to guarantee
overall quality (in particular within features that are used in many or most of
the products of the product line) verification is of utter interest. Verification is
even more important for dynamic product lines, where side-effects arising from
dynamic feature changes are difficult to predict in the development phase of a
product. Model checking [11,5] is a fully automatic verification technique for
establishing temporal properties of systems (e.g., safety or liveness properties).
Indeed, model checking has been already successfully applied to integrate fea-
tures in components and to detect feature interactions [43]. However, the typical
task for reasoning about static product lines is to solve the so-called featured
model-checking problem:

Compute the set of all valid feature combinations C such that some given
temporal requirement φ holds for the products corresponding to C.

This is in contrast to the classical model-checking problem that amounts to
prove that φ holds for some fixed system, e.g., one specific product obtained

Probabilistic Model Checking for Feature-oriented Systems 3

from a feature combination. The naive approach for solving the featured model-
checking problem is to verify the products in the product line one-by-one after
their deployment. However, already within static product lines, this approach
certainly suffers from an exponential blow-up in the number of different valid
feature combinations. To tackle this potential combinatorial blow-up, family-
based approaches are very successful, checking all products in a product line
at once rather than one-by-one [53]. In [13,12], the concept of featured tran-
sition systems has been introduced to encode the operational behaviors of all
products in a product line into a single model. The transitions in featured tran-
sition systems are annotated by feature combinations: a transition can only be
fired if it is labeled by the feature combination corresponding to the product
deployed. Symbolic techniques [39] describe states and transitions of an oper-
ational model as sets with common properties rather than listing them one-
by-one. Such techniques can be used for solving the featured model-checking
problem for product lines represented by featured transition systems efficiently
for both linear-time [13] and branching-time properties [12]. An extension of
featured transition systems that introduces guarded transitions for switches bet-
ween valid feature combinations was presented by Cordy et al. [16] allowing
for dynamic adaptions of feature combinations during the lifetime of a prod-
uct. Besides purely functional temporal requirements, the quality of (software)
products crucially depends on quantitative properties. Measurement-based ap-
proaches for reasoning about feature-oriented software have been studied inten-
sively, see, e.g., [51,50,41]. In contrast, probabilistic model-checking techniques
were studied only recently [28,52], relying on probabilistic operational models
based on discrete-time Markov chains and probabilistic computation tree logic.
For instance, Ghezzi and Sharifloo analyzed parametric sequence diagrams using
the probabilistic model-checking tool Param [28].

A Compositional Framework for Feature-oriented Systems

In this paper, we present a compositional framework to model dynamic product
lines which allows for the automated quantitative system analysis using proba-
bilistic model checking [5]. Our approach allows for easily specifying large-scaled
product lines with thousands of products described through feature diagrams
with multi-features.
Markov chains, the purely probabilistic model used in most approaches of prob-
abilistic product-line analysis [28,52], are less adequate for the compositional
design with parallel components than operational models supporting both, non-
deterministic and probabilistic choices (see, e.g., [48]). AMarkov decision process
(MDP) is such a formalism, extending labelled transition systems by internal
probabilistic choices taken after resolving nondeterminism between actions of
the system. Our framework for dynamic product lines presented in this paper
relies on MDPs with annotated costs [44]. In particular, it consists of

(1) feature modules: MDP-like models for the feature-dependent operational be-
havior of the components and their interactions,

4 C. Dubslaff et al.

(2) a parallel operator: feature-aware composing feature modules to represent
the parallel execution of independent actions by interleaving and supporting
communication between the feature modules,

(3) a feature controller: an MDP-like model for the potential dynamic switches
of feature combinations, and

(4) a join operator: yielding a standard MDP model of the complete dynamic
product line represented by feature modules and a feature controller

A product line naturally induces a compositional structure over features, where
a feature or a collection thereof corresponds to a component. In our framework,
these components are called feature modules (1). Feature modules are composed
using a parallel operator (2), which combines the operational behaviors of all fea-
tures represented by the feature modules into another feature module. We only
allow for composing compatible feature modules, i.e., feature modules which
represent the operational behavior of different features. Thus, different imple-
mentations or versions of the same feature need either to be modeled as distinct
features excluding each other or cannot be combined in our framework. Feature
activation and deactivation at runtime is described through a feature controller
(3), which is a state-based model controlling valid changes in the feature combi-
nations. As within feature modules, choices between feature combinations can be
probabilistic (e.g., on the basis of statistical information on feature combinations
and their adaptations over time) or nondeterministic (e.g., if feature changes rely
on internal choices of the controller or are triggered from outside by an unknown
or unpredictable environment) and combinations thereof.

The semantics of a feature module under a given feature controller is defined
as a parallel composition synchronizing over common feature annotations (4),
providing an elegant formalization of the feature module’s behavior within the
dynamic product line represented by the feature controller. Note that our ap-
proach separates between computation and coordination [27,42,47], which allows
for specifying features in the context of various different dynamic product lines.
Feature-oriented extensions of programming languages and specialized compo-
sition operators such as superimposition are an orthogonal approach [36,2,1].
However, the effect of superimposition could also be encoded into our frame-
work, e.g., using techniques proposed by Plath and Ryan [43].

Quantitative Analysis and Strategy Synthesis

Fortunately, the semantics of feature modules under feature controllers yields an
MDP. Thus, our approach permits to apply standard but sophisticated proba-
bilistic model-checking techniques to reason about quantitative properties. This
is in contrast to existing (also nonprobabilistic) approaches, which require model-
checking algorithms specialized for product lines. Within our approach, quanti-
tative queries such as “minimize the energy consumption until reaching a target
state” can be answered. Whereas for static product lines, one aims to solve the
featured model-checking problem, we introduce the so-called strategy synthesis
problem for dynamic product lines. This problem amounts to find an optimal

Probabilistic Model Checking for Feature-oriented Systems 5

strategy to resolve the nondeterminism between feature combination switches
in the feature controller [23]. The strategy includes the initial step of the dy-
namic product line by selecting an initial feature combination, which suffices to
solve the featured model-checking problem. Our approach thus additionally pro-
vides the possibility to reason over worst-case and best-case scenarios concerning
feature changes during runtime.

Implementation and Case Study

Models of product lines have to face a combinatorial blow-up in the number of
features. When modeling dynamic product lines, the number of possible feature
changes during runtime yield an additional combinatorial blow-up. However,
symbolic representations of models including all the behaviors in a product line
can avoid these blow-ups [12]. In this paper, we extend our compositional frame-
work for dynamic product lines [23] towards feature modules and controllers
with variables, such that it nicely fits with guarded-command languages such
as the input language of the symbolic probabilistic model checker Prism [34].
Prism uses multi-terminal binary decision diagrams for the symbolic encoding
of the probabilistic model to obtain a compact representation. To demonstrate
the usability of Prism within our framework, we carried out a case study based
on a real-case server-platform scenario, where several variants of a server can be
endowed with different kinds of network interface cards. This product line can be
equipped with an energy-aware network driver, similarly as done for the eBond
device [30]. Network cards with different performance characteristics are then
bonded or switched off according to energy-saving algorithms which, e.g., take
usage of the varying bandwidth requirements during day and night time. The
arising energy-aware server system product line, which we call eServer, can
be subject of several quantitative requirements, e.g., on the energy consumption
of the products in the product line. We illustrate how Prism can be used to
solve the strategy synthesis problem w.r.t. to such requirements for eServer
and can provide strategies how to equip a server used in different environments.
In particular, we show that symbolic methods applied to dynamic product lines
such as eServer clearly outperform explicit ones.

Outline

The paper starts with a brief summary on the foundations of product lines,
feature models, relevant principles of MDPs and their quantitative analysis.
The compositional framework for specifying dynamic product lines by means
of feature modules and feature controllers is presented in Section 3. Section 4
is devoted to the encoding of our framework into guarded-command languages,
such as the input language of the probabilistic model-checking tool Prism. Our
case study follows in Section 5, where we use Prism and the encoding of our
framework to discuss the scalability of our approach towards product lines with
thousands of products and the influence of symbolic representations. The paper
ends with some concluding remarks in Section 6.

6 C. Dubslaff et al.

2 Preliminaries

Before we recall the standard concepts for product lines, probabilistic models
and their quantitative analysis, we introduce notations for Boolean and linear
expressions to provide intuitive symbolic representations for sets.

Boolean Expressions. The powerset of a set X is denoted by 2X . For con-
venience, we sometimes use symbolic notations based on Boolean expressions
for the elements of 2X , i.e., the subsets of X. Let B(X) denote the set of
all Boolean expressions ρ built over Boolean variables x ∈ X as atoms and
the usual connectives of propositional logic (negation ¬, conjunction ∧, etc.).
The satisfaction relation |=⊆ 2X× B(X) is defined in the obvious way. For in-
stance, if X = {x1, x2, x3} and ρ = x1 ∧ ¬x2, then Y |= ρ iff Y = {x1} or
Y = {x1, x3}. To specify binary relations on 2X symbolically, we use Boolean
expressions ρ ∈ B(X ∪X ′), where X ′ is the set consisting of pairwise distinct,
fresh copies of the elements of X. Then, the relation Rρ ⊆ 2X× 2X is given by:

(Y, Z) ∈ Rρ iff Y ∪ {z′ : z ∈ Z} |= ρ

As an example, the Boolean expression ρ = (x1∨x′
3)∧¬x2 represents the relation

Rρ consisting of all pairs (Y,Z) ∈ 2X× 2X , where (1) x1 ∈ Y or x3 ∈ Z and (2)
x2 /∈ Y . For Y ⊆ X, we use Y = Y ′ as a shortform notation for the Boolean
expression

∧
y∈Y y ↔ y′.

Linear Constraints. The symbolic notations for subsets of X using Boolean
expressions can be extended towards sets of functions f : X → N, i.e., elements
of NX which we define through linear constraints γ of the form

a1x1 + a2x2 + . . . + anxn ▷◁ θ,

where ai ∈ Z, xi ∈ X for all i = 1, 2, . . . , n, ▷◁ ∈ {<,≤,=,≥, >} and θ ∈ Z. A
function f ∈ NX fulfills such a linear constraint γ as above if a1f(x1)+a2f(x2)+
. . . + anf(xn) ▷◁ θ. We then write f |= γ. The set of all linear constraints
over X is denoted by C(X), while the set of Boolean expressions over linear
constraints is BC(X) = B(C(X)). With these ingredients, the definitions stated
above for subsets of variables X take over, e.g., to the satisfaction relation |=⊆
NX×BC(X). Note that this is indeed an extension of Boolean expressions overX:
for f ∈ NX , let Cf ⊆ X denote the support of f , i.e., Cf = {x ∈ X : f(x) ≥ 1}.
Then for any Boolean expression ρ ∈ B(X), replacing all variables x by the linear
constraint (x ≥ 1) ∈ C(X) yields ρ̂ ∈ BC(X), where for all f ∈ NX

f |= ρ̂ iff Cf |= ρ

Due to this, we also allow for mixed Boolean expressions in B(C(X)∪X), simply
also denoted by BC(X). For instance, with X = {x1, x2} the mixed expression

ρ = x1 ∧ (2 · x1 + x2 ≤ 4)

defines exactly four functions f ∈ NX where f |= ρ is described through the pairs
(x1, x2) ∈ {(1, 0), (1, 1), (1, 2), (2, 0)}. Similar as for Boolean expressions without

Probabilistic Model Checking for Feature-oriented Systems 7

linear constraints, a binary relation on NX can be defined via an expression
ρ ∈ BC(X ∪X ′), where X ′ is the set consisting of pairwise distinct, fresh copies
of the elements of X. Then, the relation Rρ ⊆ NX× NX is given by:

(f, g) ∈ Rρ iff h |= ρ,

where h ∈ NX∪X′
is defined by h(x) = f(x) and h(x′) = g(x) for all x ∈ X. We

also use Y = Y ′ as a shortform notation of the expression
∧

y∈Y (y = y′).

2.1 Feature Models

A product line is a collection of products, which have commonalities w.r.t. assets
called features [14]. We discuss here a variant of product lines which allows for
multi-features, i.e., a feature can appear in a product within multiple instances
[18]. Let F denote the finite set of all such (multi-)features of a product line.
A feature combination is a function f assigning to each feature x ∈ F the
cardinality f(x). We say that f ∈ NF is valid if there is a corresponding product
in the product line consisting of exactly f(x) instances of the features x ∈ F .
A product line can hence be formalized in terms of a feature signature (F,V),
where V ⊆ NF is the set of valid feature combinations. A feature signature
(F,V) is Boolean, if V ⊆ {0, 1}F , i.e., there is at most one instance of each
feature in a valid feature combination. Feature diagrams [35] provide a compact
representation of feature signatures via a tree-like hierarchical structure (see,
e.g., Figure 1). Nodes in feature diagrams correspond to features of F . The
nodes are annotated with integer ranges that restrict the number of instances
built for the given feature [18,17]. The integer ranges are of the form [l..u], where
l, u ∈ N with l ≤ u standing for the lower and upper cardinality bound on the
feature instances. Usually, range annotations [1..1] are omitted in the feature
diagrams, and instead of range annotations [0..1] (corresponding to optional
features) a circle above the respective feature node is drawn. If the node for
feature x′ is a son of the node for feature x, then every instance of feature
x′ requires its corresponding instance of x. Several types of branchings from a
node for feature x towards its sons x′

1, . . . , x
′
n are possible. Standard branchings

denote that all sons of x are instantiated according to their cardinality range
(AND connective) and connected branchings indicate that exactly one son is
required (XOR connective). Boolean expressions of linear constraints over F
may be further annotated to describe, e.g., numerical dependencies between the
number of instances of features. In this paper, we stick to this informal and
rather intuitive description of multi-feature diagrams as it suffices for obtaining
the feature signature and the hierarchical structure of features. We refer to [18,17]
for a detailed discussion on the semantics of multi-feature diagrams.

Dynamic Product Lines. Usually, product lines are static in the sense that a
valid feature combination is fixed prior of launching the product. Product lines
allowing for activation and deactivation of features during runtime of the sys-
tem are called dynamic product lines. The common approach towards dynamic

8 C. Dubslaff et al.

product lines is to indicate disjoint sets of dynamic features D and environ-
ment features E, which respectively include features that can be activated or
deactivated at runtime either by the system itself (features of D) or by the
environment (features of E). Intuitively, an activation and deactivation of an
environment feature may impose (de-)activations of dynamic features [16]. In
[22] dynamic product lines are formalized using a generalization of feature di-
agrams where dashed nodes represent elements of D ∪ E. When not restricted
by further annotated constraints, each instance of such a dynamic feature can
be activated and deactivated at any time. In the approach by [19], the possi-
ble (de)-activations of each feature are defined explicitly by a switching relation
over (Boolean) feature combinations. We choose a similar approach towards our
compositional framework, which is also capable of supporting multi-features and
explained in Section 3.

Further Extensions. Costs for feature activations in dynamic product lines
have been considered in [54]. Besides assigning ranges to features describing
their number of instances, ranges can also be annotated to branchings in the
feature diagram, generalizing Boolean connectives for the branchings. In our
formalization using linear constraints, such group cardinalities allow for a com-
pact representation of lower and upper bounds on the number of instances in
sons of the feature diagram [17].

Example 1. As the running example of this paper, let us consider an energy-
aware server product line eServer, which is inspired by the server-rack product
line of a famous computer vendor and incorporates an energy-aware driver for
bonding network cards as presented in [30]. This product line can be represented
by a feature diagram as shown in Figure 1.
Each node is identified with the underlined letter, i.e., the set of features is

F = {e,R,T,L,A,P, o,F,S,C, y, g,H,B,D,W,M, x,b,N,G, i}.

The eServer product line consists of a server rack (R), which has at most
ten slots (o) where up to ten network cards (N) can be plugged in. Each slot
supports either a high-speed data transfer (F) or only a slow-speed transfer (S).
Clearly, a fast 10 GBit network card (G) can only be used when plugged into a
fast slot. Depending on the type of the rack, the number of slots and their kind
is restricted according to the linear constraints over F provided at the bottom
of the feature diagram. E.g., an advanced (A) eServer has at least 2 but at
most 7 slots, where at most 2 of them are fast ones. Besides these hardware
features, the eServer product line consists also of a software feature in terms
of a driver coordinating the interplay of the heterogeneous network cards (C).
The eServer incorporates eBond [30]: depending on the selected switch policy
(y), network cards can be activated for serving more bandwidth or deactivated
for saving energy. Furthermore, the method how the requested bandwidth is
distributed along the active cards is coordinated by the feature D. For instance,
the round robin feature (b) may stand for the standard uniform distribution of
bandwidth, whereas the weighted feature (W) refers to distributing bandwidth
such that every card has the same workload.

Probabilistic Model Checking for Feature-oriented Systems 9

Rack

Network Cards

Advanced

eServer

Entry Level

Coordination

Aggressive

High Savings

Balanced

Premium

[1..10]

Slow

[1..10]

Switch Policy

Round Robin

Weighted

Minimal Fast

Maximal Fast

Fast 10GBit 1GBit

Type Slots

Distribution

L ⇒ (o ≤ 2) ∧ A ⇒ (o ≤ 7 ∧ o ≥ 2 ∧ F ≤ 2) ∧
P ⇒ (o ≤ 10 ∧ o ≥ 6 ∧ F ≤ 8) ∧ (N ≤ o) ∧ (G ≤ F)

Fig. 1. Feature diagram of the dynamic eServer product line

Note that the network card feature (N) is a dynamic multi-feature, i.e., its
cardinality may vary from 1 to 10 during runtime of the eServer system. How-
ever, the annotated constraints still need to be fulfilled, e.g., N ≤ o for ensuring
that at most as many cards as slots available are plugged.

Obviously, this dynamic product line is large-scaled, dominated by the possi-
ble combinations of the multi-features representing slots and network cards. Tak-
ing the linear constraints on the card combinations into account, the eServer
product line amounts to 17,544 valid feature combinations.

2.2 Probabilistic Systems and Their Quantitative Analysis

The operational model used in this paper for modeling and analyzing the behav-
ior of products in a dynamic product line is given in terms of Markov decision
processes (MDPs) [44]. We deal here with MDPs where transitions are labeled
with a cost value. MDPs with multiple cost functions of different types (e.g.,
for reasoning about energy and memory requirements and utility values) can be
defined accordingly.

Distributions. Let S be a countable nonempty set. A distribution over S is
a function σ : S → [0, 1] with

∑
s∈S σ(s) = 1. The set {s ∈ S : σ(s) > 0} is

called the support of σ and is denoted by supp(σ). Distr(S) denotes the set of

10 C. Dubslaff et al.

all distributions over S. Given t ∈ S, the Dirac distribution Dirac[t] of t over S
is defined by

Diract = 1 and Dirac[t](s) = 0 for all s ∈ S\{t}.

The product of two distributions σ1 ∈ Distr(S1) and σ2 ∈ Distr(S2) is defined as
the distribution σ1∗σ2 ∈ Distr(S1×S2), where (σ1∗σ2)(s1, s2) = σ1(s1) ·σ2(s2)
for all s1 ∈ S1 and s2 ∈ S2.

Markov Decision Processes. An MDP is a tuple

M = (S, Sinit ,Moves),

where S is a finite set of states, Sinit ⊆ S is the set of initial states and Moves ⊆
S ×N×Distr(S) specifies the possible moves of M and their costs. We require

Moves to be finite and often write s
c−→ σ iff (s, c, σ) ∈ Moves. Intuitively, the

operational behavior of M is as follows. The computations of M start in some
nondeterministically chosen initial state of Sinit . If during M’s computation the
current state is s, one of the moves s

c−→ σ is selected nondeterministically first,
before there is an internal probabilistic choice, selecting a successor state s′ with
probability σ(s′) > 0. Value c specifies the cost for taking the move s

c−→ σ.

Steps of M, written in the form s
c
↪→p s′, arise from moves s

c−→ σ resolving
the probabilistic choice by plugging in some state s′ with positive probability, i.e.,
p = σ(s′) > 0. Paths in M are sequences of consecutive steps. In the following,
we assume a finite path π having the form

π = s0
c1
↪→p1 s1

c2
↪→p2 s2

c3
↪→p3 . . .

cn
↪→pn sn. (∗)

We refer to the number n of steps as the length of π. If 0 ≤ k ≤ n, we write
π ↓ k for the prefix of π consisting of the first k steps (then, π ↓ k ends in state
sk). Given a finite path π, the probability Pr(π) is defined as the product of the
probabilities in the steps of π and the accumulated costs cost(π) are defined as
the sum of the costs of π’s steps. Formally,

Pr(π) = p1 · p2 · . . . · pn and cost(π) = c1 + c2 + . . .+ cn.

State s ∈ S is called terminal if there is no move s
c−→ σ. A path is maximal, if

it is either infinite or ends in a terminal state. The set of finite paths starting in
some state of Sinit is denoted by FPaths.

Schedulers and Probability Measure. Within MDPs, reasoning about prob-
abilities requires the selection of an initial state and resolution of the nondeter-
ministic choices between possible moves. The latter is formalized via schedulers,
which take as input a finite path and decide which move to take next. For
the purposes of this paper it suffices to consider deterministic, possibly history-
dependent schedulers, i.e., partial functions

S : FPaths → N×Distr(S),

Probabilistic Model Checking for Feature-oriented Systems 11

where for all finite paths π as in (∗), S(π) is undefined if π is maximal and

otherwise S(π) = (c, σ) for some sn
c−→ σ. An S-path is any path that arises

when the nondeterministic choices in M are resolved by S. Thus, a finite path
π is a S-path iff there are distributions σ1, . . . , σn ∈ Distr(S) such that S

(
π ↓

k−1
)
= (ck, σk) and pk = σk(sk) for all 1 ≤ k ≤ n. Infinite S-paths are defined

accordingly.
Given a schedulerS and some initial state s ∈ Sinit , the behavior ofM under

S and s is purely probabilistic and can be formalized by a tree-like infinite-state
Markov chain MS

s over the finite S-paths of M starting in s. Markov chains
are MDPs that do not have any nondeterministic choices, i.e, where Sinit is a
singleton and |Moves(s)| ≤ 1 for all states s ∈ S. Using standard concepts, a
probability measure PS

s for measurable sets of maximal branches in the Markov
chain MS

s is defined and can be transferred to maximal S-paths in M starting
in s. For further details we refer to standard text books such as [32,37,44].

Quantitative Properties. The concept of schedulers permits to talk about the
probability of a measurable path property φ for paths starting in a fixed state s
and respecting a given scheduler S. Typical examples for such a property φ are
reachability conditions of the following type, where T and V are sets of states:

– reachability: φ = ♢T denotes that eventually some state in T will be visited
– constrained reachability: φ = V U T imposes the same constraint as ♢T with

the side-condition that all states visited before reaching T belong to V

For a worst-case analysis of a system modeled by an MDP M, one ranges over all
initial states and all schedulers (i.e., all possible resolutions of the nondetermin-
ism) and considers the maximal or minimal probabilities for φ. If φ represents
a desired path property, then Pmin

s (φ) = infS PS
s (φ) is the probability for M

satisfying φ that can be guaranteed even for the worst-case scenarios. Similarly,
Pmax
s (φ) = supS PS

s (φ) is the least upper bound that can be guaranteed for the
likelihood of M to satisfy φ (best-case scenario).

One can also reason about bounds for expected costs of paths in M. We
consider here accumulated costs to reach a set T ⊆ S of target states from a
state s ∈ S. Formally, if S is a scheduler such that PS

s (♢T) = 1, then the
expected accumulated costs for reaching T from s under S are defined by

ES
s (♢T) =

∑
π cost(π) · Pr(π),

where π as in (∗) ranges over all finite S-paths with sn ∈ T , s0 = s and
{s0, . . . , sn−1} ∩ T = ∅. If PS

s (♢T) < 1, i.e., with positive probability T will
never be visited, then ES

s (♢T) = ∞. Furthermore,

Emin
s (♢T) = infS ES

s (♢T) and Emax
s (♢T) = supS ES

s (♢T)

specify the greatest lower bound (least upper bound, respectively) for the ex-
pected accumulated costs reaching T from s in M.

Quantitative Analysis. Several powerful probabilistic model-checking tools
support the algorithmic quantitative analysis of MDPs against temporal speci-
fications, such as the reachability properties stated above. But also for tempo-
ral properties such as formulas of linear temporal logic (LTL) or probabilistic

12 C. Dubslaff et al.

computation-tree logic (PCTL) [8,6], there is a broad tool support. PCTL pro-
vides an elegant formalism to specify various temporal properties, reliability and
resource conditions. In our case study, we will use the prominent probabilistic
model checker Prism [34] that offers a symbolic MDP-engine for PCTL, dealing
with a compact internal representation of the MDP using multi-terminal binary
decision diagrams [26]. For the purpose of the paper, the precise syntax and se-
mantics of PCTL over MDPs is not relevant. It suffices to know that in PCTL,
the (constrained) reachability properties above can be described and encapsu-
lated with a probability or expectation operator. Probabilistic model-checking al-
gorithms for PCTL then allow for computing minimizing and maximizing sched-
ulers for probabilities (e.g., Pmax

s (φ)) and expectations (e.g., Emin
s (♢T)) up to

an arbitrary precision [8,6,20,25]. For the computation of the latter we assume
that Pmin

s (♢T) = 1.

3 Compositional Framework

A product line naturally induces a compositional structure where features cor-
respond to modules composed, e.g., along the hierarchy provided by feature
diagrams. Thus, it is rather natural to choose a compositional approach towards
a modeling framework for dynamic product lines. We formalize feature imple-
mentations by so-called feature modules that might interact with each other and
can depend on the presence of other features and their current own configura-
tions. Dependencies between feature modules are represented in form of guarded
transitions in the feature modules, which may impose constraints on the current
feature combination and perform synchronized actions. The interplay of the fea-
ture modules can also be described by a single feature module, which arises from
the feature implementations via parallel composition and hence only depends on
the dynamic feature changes. Unlike other models for dynamic product lines,
there is no explicit representation of the dynamic feature combination changes
inside the feature modules. Instead, we implement a clear separation between
computation and coordination as it is central for exogenous coordination lan-
guages [27,42,47]. In our approach, the dynamic activation and deactivation of
features is represented in a separate module, called feature controller. This sep-
aration yields some advantages: feature modules can be replaced and reused for
many scenarios that vary in constraints for switching feature combinations and
that might even rely on different feature signatures.

We model both, feature modules and feature controllers, as MDP-like au-
tomata models with annotations for (possibly feature-dependent) interactions
between modules and the controller. To reason about resource constraints, cost
functions are attached to the transitions of both, the feature modules and the
feature controller. Through parallel composition, the operational behavior of the
complete dynamic product line has a standard MDP semantics. We show also
that our approach towards dynamic product lines is more expressive than exist-
ing approaches by providing embeddings into our framework. The compositional
framework we present here aims also to provide a link between abstract mod-

Probabilistic Model Checking for Feature-oriented Systems 13

els for feature implementations and the guarded command languages supported
by state-of-the art model checkers. This approach is orthogonal to the compo-
sitional approaches for product lines that have been proposed in the literature,
presenting an algebra for the nonprobabilistic feature-oriented composition of
modules that covers subtle implementation details (see, e.g., [33,43,2,40]).

3.1 Feature Modules

To keep the mathematical model simple, we put the emphasis on the composi-
tional treatment of features and therefore present first a data-abstract lightweight
formalism for the feature modules. In this setting, feature modules can be seen
as labeled transition systems, where the transitions have guards that formalize
feature-dependent behaviors and are annotated with probabilities and costs to
model stochastic phenomena and resource constraints.

We start with the definition of a feature interface that declares which features
are “implemented” by the given feature module (called own features) and on
which external features the behavior of the module depends. In the following,
we assume a given feature signature (F,V), e.g., provided by a feature diagram,
where V ⊆ NF is finite.

Definition 1 (Feature interface). A feature interface F is a pair ⟨OwnF,ExtF⟩
consisting of two subsets OwnF and ExtF of F such that OwnF ∩ ExtF = ∅.

With abuse of notations, we often write F to also denote the set OwnF ∪ ExtF
of features affected by the feature interface F. We now define feature modules
as an MDP-like formalism according to a feature interface, where moves may
depend on features of the feature interface and the change of own features can
be triggered, e.g., by the environment. Note that we assume a feature module to
incorporate all behaviors of the instances of the own features, i.e., its behavior
depends on the cardinality of the instances of own features and its types, but
cannot depend on the implementation of single instances.

Definition 2 (Feature module). A tuple Mod = (Loc, Locinit ,F,Act,Trans)
is called feature module when

– Loc is a countable set of locations,
– Locinit ⊆ Loc is the set of initial locations,
– F = ⟨OwnF,ExtF⟩ is a feature interface,
– Act is a finite set of actions, and
– Trans = TrAct ∪ TrSw is a finite transition relation.

The operational behavior of Mod specified by Trans is given by feature-guarded
transitions that are either labeled by an action (TrAct) or by a switch event
describing own feature changes (TrSw). Formally:

TrAct ⊆ Loc× BC(F)× Act× N×Distr(Loc)

TrSw ⊆ Loc× BC(F)× BC(OwnF ∪ OwnF′)× N×Distr(Loc)

14 C. Dubslaff et al.

Recall that BC(·) stands for the set of Boolean expressions over linear constraints
on feature combinations.

Let us go more into detail concerning the operational behavior of feature mod-
ules. Both types of transitions in Mod, action-labeled transitions and switch
transitions, have the form θ = (ℓ, ϕ, , c, λ), where

– ℓ is a location, called source location of θ,
– c ∈ N specifies the cost1 caused by executing θ,
– ϕ ∈ BC(F) is a Boolean expression of linear constraints on feature combina-

tions, called feature guard, and
– λ is a distribution over Loc specifying an internal choice that determines the

probabilities for the successor locations.

For action-labeled transitions, the third component is an action α ∈ Act
representing some computation of Mod, which will be enabled if the current fea-
ture combination fulfills the feature guard ϕ and not avoided by the interaction
with other feature modules. For switch transitions, is a Boolean expression
ρ ∈ BC(OwnF∪OwnF′), enabling Mod to react or impose constraints on dynamic
changes of features owned by Mod.

Note that we defined feature modules in a generic way, such that feature
modules need not to be aware of the feature signature and realizable feature
switches. This makes them reusable for different dynamic product lines.

3.2 Parallel Composition

We formalize the interactions of feature modules by introducing a parallel op-
erator on feature modules. Thus, starting with separate feature modules for all
features f ∈ F one might generate feature modules that “implement” several
features, and eventually obtain a feature model that describes the behavior of
all “controllable” features of the product line. Additionally, there might be some
features in the set of features F provided by an unknown environment, where
no feature modules are given.

The parallel operator for two composable feature modules follows the style
of parallel composition of probabilistic automata [49,48] using synchronization
over shared actions (handshaking) and interleaving for all other actions. Let

Mod1 = (Loc1, Loc
init
1 ,F1,Act1,Trans1)

Mod2 = (Loc2, Loc
init
2 ,F2,Act2,Trans2),

where Fi = ⟨OwnFi,ExtFi⟩ and Transi = TrActi∪TrSwi for i = 1, 2. Composabil-
ity of Mod1 and Mod2 means that OwnF1 ∩ OwnF2 = ∅. Own features of Mod1
might be external for Mod2 and vice versa, influencing each others behavior.

1 For simplicity, we deal here with a single cost value for each guarded transition.
Feature modules with multiple cost values will be considered in the case study of
Section 5 and can be defined accordingly.

Probabilistic Model Checking for Feature-oriented Systems 15

α ∈ Act1 \ Act2, (ℓ1, ϕ, α, c, λ1) ∈ TrAct1

(⟨ℓ1, ℓ2⟩, ϕ, α, c, λ1 ∗Dirac[ℓ2]) ∈ TrAct

α ∈ Act2 \ Act1, (ℓ2, ϕ, α, c, λ2) ∈ TrAct2

(⟨ℓ1, ℓ2⟩, ϕ, α, c,Dirac[ℓ1] ∗ λ2) ∈ TrAct

α ∈ Act1 ∩ Act2, (ℓ1, ϕ1, α, c1, λ1) ∈ TrAct1, (ℓ2, ϕ2, α, c2, λ2) ∈ TrAct2

(⟨ℓ1, ℓ2⟩, ϕ1 ∧ ϕ2, α, c1 + c2, λ1 ∗ λ2) ∈ TrAct

(ℓ1, ϕ, ρ, c, λ1) ∈ TrSw1

(⟨ℓ1, ℓ2⟩, ϕ, ρ ∧ OwnF2 = OwnF′
2, c, λ1 ∗Dirac[ℓ2]) ∈ TrSw

(ℓ2, ϕ, ρ, c, λ2) ∈ TrSw2

(⟨ℓ1, ℓ2⟩, ϕ, ρ ∧ OwnF1 = OwnF′
1, c,Dirac[ℓ1] ∗ λ2) ∈ TrSw

(ℓ1, ϕ1, ρ1, c1, λ1) ∈ TrSw1, (ℓ2, ϕ2, ρ2, c2, λ2) ∈ TrSw2

(⟨ℓ1, ℓ2⟩, ϕ1 ∧ ϕ2, ρ1 ∧ ρ2, c1 + c2, λ1 ∗ λ2) ∈ TrSw

Fig. 2. Rules for the parallel composition of feature modules

Definition 3 (Parallel composition). The parallel composition of two com-
posable feature modules Mod1 and Mod2 is defined as the feature module

Mod1 ∥Mod2 = (Loc, Locinit ,F,Act,Trans),

where the feature interface F = ⟨OwnF,ExtF⟩,

Loc = Loc1 × Loc2 Locinit = Locinit1 × Locinit2

OwnF = OwnF1 ∪ OwnF2 ExtF = (ExtF1 ∪ ExtF2) \ OwnF
Act = Act1 ∪ Act2 Trans = TrAct ∪ TrSw

and TrAct and TrSw are defined by the rules shown in Figure 2.

Obviously, Mod1 ∥Mod2 is again a feature module. In contrast to the (non-
probabilistic) superimposition approach for composing modules [36,43], the par-
allel operator ∥ is commutative and associative. More precisely, if Modi for
i ∈ {1, 2, 3} are pairwise composable feature modules, then:

Mod1 ∥Mod2 = Mod2 ∥Mod1

(Mod1 ∥Mod2) ∥Mod3 = Mod1 ∥ (Mod2 ∥Mod3)

For the parallel composition of feature modules with multiple cost functions,
one has to declare which cost functions are combined. This can be achieved by
dealing with types of cost functions (e.g., energy, money, memory requirements)
and accumulating costs of the same type.

16 C. Dubslaff et al.

3.3 Feature Controller

We now turn to feature controllers, which specify the rules for the possible
changes of feature combinations during runtime of the system. We start with
purely nondeterministic controllers (Definition 4) switching feature combina-
tions similar to [19]. Then, we extend the purely nondeterministic controllers by
assigning probabilities to the feature switch events (Definition 5).

Definition 4. A simple feature controller is a tuple

Con = (V,V init ,SwRel),

where V init ⊆ V is the set of initial feature combinations and SwRel ⊆ V×N×V
is a relation, called (feature) switch relation, that formalizes the possible dynamic
changes of the feature combinations and their cost. We refer to elements in SwRel
as switch events and require that (f, d1, f

′), (f, d2, f
′) ∈ SwRel implies d1 = d2.

If there are several switch events (f, d1, f1), (f, d2, f2), . . . that are enabled
for the feature combination f , then the choice which switch event fires is made
nondeterministically. This is adequate, e.g., to represent user activities such as
upgrades or downgrades of a software product or to express environmental in-
fluences.

Although our focus is on dynamic product lines, static product lines can easily
be modeled using the simple feature controller Constatic = (V,V,∅). The concept
of simple feature controllers also covers the approach of [16,22], where dynamic
product lines are represented by Boolean feature signatures (F,V) extended with
disjoint sets of dynamic features D ⊆ F and environment features E ⊆ F . The
features in D ∪E can be activated or deactivated at any time, while the modes
of all other features remain unchanged. This dynamic behavior of the feature
combinations is formalized using the controller

ConD,E = (V,V,SwRelD,E),

where SwRelD,E is defined for all f, g ∈ V, omitting cost values of switch events
for better readability:

(f, g) ∈ SwRelD,E iff ∅ ̸= {x ∈ F : f(x) + g(x) = 1} ⊆ D ∪ E.

There might also be switch events where statistical data on the frequency of
uncontrollable feature switch events is at hand. For instance, the deactivation
of features that are damaged due to rare environmental events (electrical power
outage, extreme hotness, etc.) might be better modeled probabilistically instead
of nondeterministically. This leads to the more general concept of probabilistic
feature controllers, where switch events are pairs (f, d, γ) consisting of a feature
combination f , a cost value d ∈ N and a distribution γ over V. Thus, probabilistic
feature controllers can be seen as MDPs with switch events as moves.

Definition 5 (Controller). A probabilistic feature controller, briefly called
controller, is a tuple Con = (V,V init ,SwRel) as in Definition 4, but where

Probabilistic Model Checking for Feature-oriented Systems 17

SwRel ⊆ V × N×Distr(V)

is finite and (f, d1, γ), (f, d2, γ) ∈ SwRel implies d1 = d2.

Clearly, each simple feature controller Con can be seen as a (probabilistic
feature) controller. For this, we just have to identify each switch event (f, d, g)
with (f, d,Dirac[g]).

3.4 MDP-semantics

The semantics of a feature module Mod under some controller Con is given in
terms of an MDP. If Mod stands for the parallel composition of all modules that
implement the features of a given product line and the controller Con specifies the
dynamic adaptions of the feature combinations, then the arising MDP formalizes
the operational behaviors of the product line where the feature switches are
resolved according to the rules specified by the controller. In what follows, we
fix a feature module and a controller

Mod = (Loc, Locinit , F, Act, Trans)

Con = (V,V init ,SwRel)

as in Definition 2 and Definition 5, where F ⊆ F . Intuitively, an action-labeled
transition (ℓ, ϕ, α, c, λ) of Mod is a possible behavior of Mod in location ℓ, pro-
vided that the current state f of the controller Con (which is simply the current
feature combination) meets the guard ϕ. Switch events of the controller can be
performed independently from Mod if they do not affect the own features of
Mod, whereas if they affect at least one feature in OwnF, the changes of the
mode have to be executed synchronously. Thus, feature modules can trigger or
prevent switch events by offering or refusing the required interactions with the
feature controller. This allows, e.g., to model that system upgrades may be only
permitted when all internal actions of the feature modules are completed.

Definition 6 (Semantics of feature modules). Let Mod and Con be as be-
fore. The behavior of Mod under the controller Con is formalized by the MDP

Mod ⋊⋉ Con = (S, Sinit ,Moves),

where S = Loc × V, Sinit = Locinit × V init and where Moves is defined by the
rules in Figure 3. Recall that ρ ∈ BC(OwnF ∪ OwnF′) is regarded as a Boolean
expression on linear constraints over F ∪ F ′ specifying a binary relation Rρ ⊆
NF×NF.

Due to the MDP semantics of feature modules under a controller, standard
probabilistic model-checking techniques for the quantitative analysis can be di-
rectly applied. This includes properties involving feature combinations, since
these are encoded into the states of the arising MDP.

18 C. Dubslaff et al.

(ℓ, ϕ, α, c, λ) ∈ TrAct, f |= ϕ

(⟨ℓ, f⟩, c, λ ∗Dirac[f]) ∈ Moves

(ℓ, ϕ, ρ, c, λ) ∈ TrSw, f |= ϕ, f
d−→ γ,

∃g ∈ supp(γ), x ∈ OwnF.f(x) ̸= g(x),

∀g ∈ supp(γ).(f, g) ∈ Rρ

(⟨ℓ, f⟩, c+ d, λ ∗ γ) ∈ Moves

f
d−→ γ, ∀g ∈ supp(γ), x ∈ OwnF.f(x) = g(x)

(⟨ℓ, f⟩, d,Dirac[ℓ] ∗ γ) ∈ Moves

Fig. 3. Rules for the moves in the MDP Mod ⋊⋉ Con

3.5 Remarks on our Framework

In this section, we briefly discuss how the basic formalisms of our framework can
be refined for more specific applications.

Handling Switch Events. Within the presented formalism the switch events
appear as nondeterministic choices and require interactions between the con-
troller and all modules that provide implementations for the affected features.
Employing the standard semantics of MDPs, where one of the enabled moves is
selected nondeterministically, this rules out the possibility to express that cer-
tain switch events might be unpreventable. However, such unpreventable switch
events can be included into our framework, refining the concept of feature con-
trollers by explicitly specifying which switch events must be taken whenever they
are enabled in the controller. This could modeled by adding an extra transition
relation for urgent switch events or prioritizing switches.

Instead of urgency or priorities, one might also keep the presented syntax
of feature modules and controllers, but refine the MDP-semantics by adding
fairness conditions that rule out computations where enabled switch events are
postponed ad infinitum. Also here, we can benefit from standard techniques to
treat fairness assumptions within PCTL properties developed for MDPs [6].

Another option for refining the nondeterministic choices in the controller is
the distinction between switch events that are indeed controllable by the con-
troller and those that are triggered by the environment. This naturally leads to
a game-based view of the MDP for the composite system.

Feature Controller as Feature Module. To emphasize the feature-oriented
aspects of our framework, we used a different syntax for controllers and fea-
ture modules. Nevertheless, controllers can be viewed as special feature modules
when we discard the concept of switch events and switch transitions and rephrase
them as action-labeled transitions. To transform controllers syntactically to fea-
ture modules, we have to add the trivial guard “true” and introduce names for
all switch events. When turning the switch transitions of the feature modules
into action-labeled transitions, matching names must be introduced to align the
parallel operators ∥ and ▷◁. Note that in the constructed feature modules, all

Probabilistic Model Checking for Feature-oriented Systems 19

features are external and the controller locations coincide with feature combi-
nations. However, the framework can easily be extended supporting also own
operational behavior of the controllers by adding locations to the feature combi-
nations. Furthermore, since controllers are then a special kind of feature modules,
different feature controllers may be composed, enabling to specify the rules for
switching features provided by different stakeholder perspectives, e.g., restric-
tions on feature combination switches imposed by the vendor of the product
line, the operator of the system, or the user.

Multi-features as Multiple Features. We assumed that a multi-feature in-
cludes all the behaviors of the instances of the feature, i.e., the instances do
not have a distinguishable characteristics. However, annotating each feature and
its actions with the number of its instantiation makes multi-features explicit,
breaking the symmetry between the multi-features. One consequence for fea-
ture models is that multi-feature diagrams then have the same expressiveness
as simple feature diagrams. Concerning our framework, every instance of each
multi-feature then requires its own implementation in terms of a feature module.

Superimposition. Feature modules and feature controllers might serve as a
starting point for a low-level implementation of features in a top-down design
process. Vice versa, feature modules may also be extracted from “real” imple-
mentations using appropriate abstraction techniques. Prominent composition
operators for feature-oriented software such as superimposition [36,43,2] are only
supported implicitly in our framework by representing the effect of superimpo-
sition by means of feature guards and synchronization actions.

4 Variables and Guarded-command Languages

So far, we presented a lightweight data-abstract formalism for feature modules
with abstract action and location names. This simplified the presentation of the
mathematical model. From the theoretical point of view, feature modules in the
sense of Definition 2 are powerful enough to encode systems where the modules
operate on variables with finite domains. Even communication over shared vari-
ables can be mimicked by dealing with handshaking and local copies of shared
variables. In practice, however, the explicit use of assignments for variables and
guards for the transitions that impose constraints for local and shared variables
is desirable; not only to avoid unreadable encodings, but also for performance
reasons of the algorithmic analysis. The concept of variables can also help to
generate more compact representations of the MDP-semantics for product lines
according to our compositional framework, using, e.g., symbolic representations
with linear constraints over variables. Furthermore, feature modules with vari-
ables could also provide operators that mimic the concept of superimposition
[43]. The formal definition of an extension of feature modules by variables is
rather technical, but fairly standard. However, such extended feature modules
directly yield a translation into guarded-command languages, which makes our
framework useful for the application of model-checking tools, such as Prism [34].

20 C. Dubslaff et al.

4.1 Feature Modules with Variables

Let use suppose that Var is a finite set of typed variables, where the types
are assumed to be finite as well (e.g., Boolean variables or integers with some
fixed number of digits). We denote furthermore by VAL the set of valuation
functions for the variables, i.e., type-consistent mappings that assign to each
variable x ∈ Var a value. In analogy to the symbolic representation of sets
of integer-valued functions by Boolean expressions over linear constraints we
introduced in the preliminaries, we can represent subsets of VAL by Boolean
expressions, where the atoms are assertions on the values of the variables. Let
BC(Var) denote the set of these Boolean expressions. Then, e.g., if x and y are
variables with domain {0, 1, 2, 3} and z a variable with domain {red, green,blue},
the Boolean expression ϕ = (x < y) ∧ (y > 2) ∧ (z ̸= green) represents all
valuations v ∈ VAL with v(x) < v(y) = 3 and v(z) ∈ {red,blue}.
Interface. The interface of a feature module Mod now consists of a feature
interface F = ⟨OwnF,ExtF⟩ as in Definition 1 and a declaration which variables
from Var are local and which ones are external. The local variables can appear
in guards and can be modified by Mod, while the external variables can only
appear in guards, but cannot be written by Mod. Instead, the external variables
of Mod are supposed to be local for some other module. We denote these sets by
OwnV and ExtV, write V for OwnV∪ExtV and extend the notion of composability
of two feature modules by the natural requirement that there are no shared local
variables.

Locations and Initial Condition. One can think of the variable valuations for
the local variables to serve as locations in the module Mod. However, there is no
need for an explicit reference to locations since all transitions will be described
symbolically (see below). Instead of initial locations, we deal with an initial
condition for the local variables.

Updates and Symbolic Transitions. Transitions in Mod might update the
values of the local variables. The updates are given by sequences of assignments
x1 := expr1; . . . ;xn := exprn, where x1, . . . , xn are pairwise distinct variables in
OwnV and expr i are type-consistent expressions that refer to variables in V. We
formalize the effect of the updates that might appear in Mod by functions upd :
VAL → VAL with upd(v)(y) = v(y) for all non-local variables y ∈ Var \ OwnV.

Instead of explicit references to the variable valuations in the transitions, we
use a symbolic approach based on symbolic transitions. Symbolic transitions rep-
resent sets of guarded transitions, possibly originating from multiple locations,
and are of the following form

θ = (guard , ϕ, , c, prob upd),

where guard ∈ BC(V) is a variable guard imposing conditions on the local and
external variables, and ϕ ∈ BC(F) is a feature guard as before. The third and
fourth component and c are as in the data-abstract setting. That is, stands
for an action label α ∈ Act or a Boolean expression ρ ∈ BC(OwnF ∪ OwnF′) for
the switch events, while c ∈ N stands for the cost caused by taking transition θ.

Probabilistic Model Checking for Feature-oriented Systems 21

The last component prob upd is a probabilistic update, i.e., a distribution over
finitely many updates for variables in OwnV. These are written in the form

p1 : upd1 + p2 : upd2 + . . . + pk : updk,

where pi are positive rational numbers with p1 + . . .+ pk = 1 and the updi’s are
updates for the local variables. That is, pi is the probability for update updi.

4.2 Data-aware Parallel Composition

The extension of the parallel operator ∥ for composable feature modules with
variables is rather tedious, but straightforward. As stated above, composability
requires that there are no common own features and no common local variables.
The local variables of the composite module Mod1 ∥Mod2 are the variables that
are local for one module Modi, i.e., OwnV = OwnV1 ∪ OwnV2 and ExtV =
(ExtV1 ∪ ExtV2) \ OwnV. The feature interface of Mod1 ∥Mod2 is defined as in
the data-abstract setting. The initial variable condition of Mod1 ∥Mod2 arises
by the conjunction of the initial conditions for Mod1 and Mod2. Let us now turn
to the transitions in Mod1 ∥Mod2.

– All action-labeled symbolic transitions in Mod1 or Mod2 with some non-
shared action α are also transitions in Mod1 ∥Mod2.

– Action-labeled symbolic transitions

θ1 = (guard1, ϕ1, α, c1, prob upd1) ∈ TrAct1

θ2 = (guard2, ϕ2, α, c2, prob upd2) ∈ TrAct2

with a shared action α ∈ Act1∩Act2 are combined into a symbolic transition
of Mod1 ∥Mod2:

θ1 ∥ θ2 = (guard , ϕ, α, c1 + c2, prob upd),

where guard = guard1 ∧ guard2, ϕ = ϕ1 ∧ ϕ2 and prob upd combines the
probabilistic update functions prob upd1 and prob upd2. That is, if updi has
probability pi under distribution prob upd i for i = 1, 2, then the combined
update that performs the assignments in upd1 and upd2 simultaneously has
probability p1 · p2 under prob upd .

– The adaption of the rules for switch transitions in Mod1 ∥Mod2 can be ob-
tained analogously as for action transitions and is omitted here.

4.3 Data-aware MDP-semantics

In the data-abstract setting, a reasonable MDP-semantics of a feature mod-
ule Mod under controller Con = (V,V init ,SwRel) has been defined, no matter
whether Mod is just a fragment of the product line and may interact with other
modules or not. An analogous definition for the data-aware setting can be pro-
vided either for modules without external variables or by modelling the changes
of the values of the external variables by nondeterministic choices.

22 C. Dubslaff et al.

Let us here consider the first case where we are given a module Mod =
Mod1 ∥ . . . ∥Modn that arises through the parallel composition of several mod-
ules such that all variables x ∈ Var are local for some module Modi. Then, Mod
has no external variables and Var = OwnV = V. Furthermore, OwnF is the set of
all features of the given product line for which implementations are given, while
ExtF stands for the set of features controlled by the environment. The MDP
Mod ⋊⋉ Con has the state space S = VAL × V. The initial states are the pairs
⟨v, f⟩ where v satisfies the initial variable condition of Mod and f ∈ V init . The
moves in Mod ⋊⋉ Con arise through rules that are analogous to the rules shown in
Figure 3 on page 18. More precisely, Moves is the smallest set of moves according
to the following three cases, where ⟨v, f⟩ is an arbitrary state in Mod ⋊⋉ Con:

– An action-labeled transition (guard , ϕ, α, c, prob upd) in Mod is enabled in
state ⟨v, f⟩ if f |= ϕ and v |= guard . If updi(v) ̸= updj(v) for i ̸= j, then:

(⟨v, f⟩, c, λ ∗Dirac[f]) ∈ Moves,

where λ(updi(v)) = pi for i = 1, . . . , k and λ(v̂) = 0 for all other valuation
functions v̂.

– If f
d−→ γ is a switch transition in Con that does affect at most the features

of the environment, i.e., f(x) = g(x) for all g ∈ supp(γ), x ∈ OwnF, then:

(⟨v, f⟩, d,Dirac[ℓ] ∗ γ) ∈ Moves

– Suppose that (guard , ϕ, ρ, c, prob upd) is a switch transition in Mod enabled
in ⟨v, f⟩ and affecting own features, i.e., f |= ϕ and v |= guard and there are
g ∈ supp(γ), x ∈ OwnF with f(x) ̸= g(x). Again, ρ ∈ BC(OwnF ∪ OwnF′)
specifies a binary relation Rρ ⊆ NF×NF. If (f, g)∈Rρ for all g∈supp(γ) then:

(⟨v, f⟩, c+ d, λ ∗ γ) ∈ Moves,

where λ is defined as in the first (action-labeled) case.

5 Quantitative Feature Analysis

Within the compositional framework presented in the previous sections, let us
assume that we are given feature modules Mod1, . . . ,Modn which stand for ab-
stract models of certain features in F and a feature controller Con specifying
the rules for feature combination changes. The feature set F might still contain
other features where no implementations are given, which are external features
controlled by the environment. Alternatively, one of the feature modules can
formalize the interference of the feature implementations with a partially known
environment, e.g., in form of stochastic assumptions on the workload, the fre-
quency of user interactions, or reliability of components. Applying the composi-
tional construction by putting feature modules in parallel and joining them with
the feature controller, we obtain an MDP of the form

M = (Mod1 ∥ . . . ∥Modn) ⋊⋉ Con.

Probabilistic Model Checking for Feature-oriented Systems 23

This MDP M formalizes the operational behavior of a dynamic product line
and can now be used for a quantitative analysis. Whereas other family-based
model-checking approaches for product lines require feature-adapted algorithms
[13,12], the task of a quantitative analysis of dynamic product lines is thus
reduced to standard algorithmic problems for MDPs and permits the use of
generic probabilistic model-checking techniques.

5.1 The Strategy Synthesis Problem

A quantitative worst-case analysis in the MDP M that establishes least upper
or greatest lower bounds for the probabilities of certain properties or for the
expected accumulated costs as introduced in Section 2.2 can be carried out with
standard probabilistic model-checking tools. These values provide guarantees on
the probabilities under all potential resolutions of the nondeterministic choices
in M, possibly imposing some fairness constraints to ensure that continuously
enabled dynamic adaptions of the feature combinations (switch events) cannot
be superseded forever by action-labeled transitions of the feature modules.

In our framework, we separated the specifications of the potential dynamic
adaptions of feature combinations (the controller) and the implementations of
the features (the feature modules). Hence, although a worst-case analysis can give
important insights in the correctness and quality of a product line, it appears
natural to go one step further by asking for optimal strategies triggering switch
events. Optimality can be understood with respect to queries like maximizing the
probability for desired behaviors or minimizing the expected energy consumption
while meeting given deadlines.

Several variants of this problem can be considered. The basic and most natu-
ral variant that we address here relies on the assumption that the nondetermin-
ism in the MDP M for the composite system stands for decisions to be made by
the controller, i.e., only the switch events appear nondeterministically, whereas
the feature modules behave purely probabilistically (or deterministically) after
joining them with the controller. More formally, we suppose that in each state
s of M, either there is a single enabled move representing some action-labeled
transition of one or more feature modules or all enabled moves stand for switch
events. Furthermore, we assume that features which are implemented as software
or hardware components (usually the features not modeling the environment)
act deterministically. In this case, an optimal strategy for the controller is just
a scheduler for M that optimizes the quantitative measure of interest. The task
that we address is the strategy synthesis problem, i.e., given M and some PCTL-
query Φ as in Section 2.2, construct a scheduler S for M that optimizes the
solution of the query Φ. Indeed, the standard probabilistic model-checking algo-
rithms for PCTL are applicable to solve the strategy synthesis problem. Note
that if the feature controller represents a static behavior (see Constatic in Sec-
tion 3.3), the strategy synthesis problem coincides with the probabilistic version
of the featured model-checking problem mentioned in the introduction, where
the task amounts of computing all initial feature combinations such that the
corresponding product satisfies Φ.

24 C. Dubslaff et al.

5.2 The eServer Product Line

In this section, we describe the eServer product line for which the feature
model has been already introduced in the preliminaries (see Example 1). We
modeled this dynamic product line following our framework, i.e., implementing
feature modules and a feature controller.

Feature Modules. The feature diagram shown in Figure 1 depicts the fea-
tures of the eServer product line, including their hierarchical dependencies
and cardinalities which restrict the valid feature combinations. We implemented
each feature in a single feature module, where three basic feature modules arise
through parallel composition: the rack (R), network cards (N), and coordination
feature (C). The rack feature is the basic server hardware, where depending on
its type multiple slots (o) for network cards can be chosen. Slots are either sup-
porting a high or low bandwidth. The initial hardware configuration cannot be
changed after deployment, except for the network cards feature, where during
runtime the quantities of cards may increase (until the number of slots in the
basic system is reached) or the type of the card can be changed upgrading from
a slow 1 GBit to a fast 10 GBit network card. Clearly, a fast network card can
only be used as such in a slot supporting high bandwidths. The rules for network
card switches are formalized by the feature controller and will be described in
the next section.

Besides these hardware features of the product line, the coordination fea-
ture stands for the software features. More precisely, it stands for the drivers
which control the interplay between the hardware and the higher-level software
layers. The distribution feature (D) manages how the requested bandwidth is
distributed amongst the network cards in the system:

Round Robin stands for the standard distribution scheme, where a data pack-
age is served by the next network card having free capacities

Weighted is like the round robin scheme, but weighs the fast cards according
to their maximal bandwidth with a factor of 10 compared to the lower ones

Maximal Fast first lets all fast network cards serve packages before a round
robin distribution over all slow cards is performed

Minimal Fast is as Maximal Fast with switched roles for fast and slow cards

The switch policy feature (y) implements an energy-aware bonding of (heteroge-
nous) network cards according to the eBond principle [30] and exploits the
different energy characteristics of the network cards to save energy. Individual
network cards can be switched on at any time whenever more bandwidth is re-
quired and switched off otherwise. In [30], simulation-based techniques were used
to show that within eBond, energy savings up to 75% can be achieved when
the demand for bandwidth varies over time, e.g., between day and night time.
In the eServer product line, we follow the energy-savings algorithms presented
for eBond, providing a switch policy how to activate and deactivate network
cards during runtime:2

2 Activation and deactivation of network cards should not be confused with changing
the network cards feature by plugging or unplugging cards.

Probabilistic Model Checking for Feature-oriented Systems 25

2500

2000

1500

1000

500

0.5 1 1.5 2 2.5 30

MBit/s

days

2500

2000

1500

1000

500

0.5 1 1.5 2 2.5 30

MBit/s

days

Fig. 4. Bandwidth feature (left) and real-world bandwidth behavior (right)

Aggressive stands for a policy where all those cards are switched off which
have not been used within the last five minutes

High Savings assumes 10% higher bandwidth before switching off cards
Balanced behaves as the high savings policy, but with an additional cool-down

phase of 30 minutes after the activation of a network card in which network
cards can only be activated but not deactivated

Note that both, the distribution and switch policy feature, are chosen initially
when the eServer is deployed and cannot be changed any further during run-
time. Furthermore, all the features described by now behave deterministically,
but depend on the environment modeled probabilistically.

Environment Features. For a quantitative analysis of eServer, we further
incorporate environment features, which implement deterministic environment
behavior such as time and statistical assumptions on the environment, e.g., the
feature switch behavior or the requested bandwidth the server platform has to
face. Feature switches are influenced by the environment, since replacing hard-
ware clearly depends on the reliability of the technical staff of the server opera-
tor. We exemplified this influence by assuming that the technical staff requires
at least five minutes after the need for a new network card has been discovered,
and arrives with a probability of 90% in each time interval of five minutes. The
bandwidth is modeled via a noised zick-zag curve parameterized over a maximal
bandwidth value the server has to expect. This curve follows the behavior of
real-world server systems, where the same characteristics can be observed: dur-
ing night time, bandwidth requirements are almost vanished, whereas in the mid
day, the requested bandwidth peaks at a value which is almost constant over the
days. In Figure 4, a plot of our bandwidth model over three days is shown on
the left, whereas a real-world example taken from [30] is shown on the right. In
both cases, the peak for the requested bandwidth is at about 2.4 GBit/s. Thanks
to enhancing our framework by variables, these environmental parameters can
easily be encoded as variables time and bandwidth.

Feature Controller. Rules for plugging new network cards or upgrading a slow
network card to a fast one are implemented into a feature controller. These rules
are a combination of restrictions provided by the vendor of the product line or the
server operator. Whereas the vendor restricts feature switches only in the sense
that the aimed product should not leave the product line, the server operator may

26 C. Dubslaff et al.

require that money for new network cards should only be spent if the network
card is needed for the eServer to operate faithfully, i.e., when the workload of
the system is almost at the maximum of the available bandwidth. Furthermore,
we assume that network cards that are inactive do not consume any energy and
the system operator does not allow for downgrading, i.e., unplugging a network
card from the system. Figure 5 shows the fragment of the feature controller
we implemented for eServer, where it is assumed that the initial product is
an advanced server with two fast and one slow slot (similar to the professional
eServer device presented in [23]) initially equipped with one slow network card
only. The figure shows the quantity of the features for the network cards only,

G = 0
i = 1

G = 1
i = 1

G = 0
i = 2

G = 2
i = 1

G = 1
i = 2

G = 0
i = 3

slow, $24

fast, $526

upgrade, $526fast, $526

slow, $24 upgrade, $526

slow, $24

Fig. 5. Fragment of the eServer feature controller

captured by pairs [G = n, i = k], which stand for n active 10GBit features and k
active 1GBit network card features. There are three possible actions which can be
performed by the feature controller: plugging a fresh 10 GBit card into the system
(fast), replacing a 1 GBit card by a 10 GBit one (upgrade), and plugging a fresh
1 GBit card into the system (slow). New cards go along with monetary costs, i.e.,
a 10 GBit card costs $526, whereas a 1 GBit card sells at $24. These prices are
taken from the vendors product line which inspired the eServer example. Not
drawn in the figure are the constraints on the transitions, requiring, e.g., that the
technical staff is present and that the current requested bandwidth justifies the
need of changing the feature combination, both influenced by the environment
feature. Expressing this more formally with variables and linear constraints on
feature combinations, and assuming that the environment variable bandwidth is
measured in GBit/s, each transition is in fact equipped with a guard

80% · (10 ·G+ i) < bandwidth,

meaning that the workload of the network cards is higher than 80% and hence,
the system is under stress. This may lead to a point where the server may not be
able to serve the bandwidth requested. The latter corresponds to a service-level
agreement (SLA) violation in the terms by [30].

Energy Consumption and Monetary Costs. Quantitative properties of the
eServer product line are incorporated through the annotation of costs, where
we consider in particular the energy consumption of the network cards and mon-

Probabilistic Model Checking for Feature-oriented Systems 27

etary costs. For the latter, we annotated costs to the feature controller describing
the money to be spent for plugging new cards. Furthermore, we annotate the
initial costs for the system purchased, where the entry systems range from $629
to $1494, the advanced systems from $1279 to $1699 and the premium systems
from $2139 to $9399. For requesting technical staff we assume costs of $39.

The energy consumption of the network cards (we refer to an Intel Ethernet
Server Adapter X520-T featuring an E76983 CPU as 10 GBit card and an Intel
EXPI9301CTBLK network interface card with an E25869 CPU as 1 GBit card)
highly depends on the workload. Detailed measurements for the cards mentioned
above have been undertaken in [30] in the scope of eBond. We approximate their
results by linear functions, as suggested by the authors of [30]. The 10 GBit
card consumes 7.88 Watts in the idle state and 8.10 Watts under full load. For
the 1 GBit card, the power consumption rises linearly from 1.35 Watts until
reaching a throughput of 540 MBit/s at 1.92 Watts, staying constantly at this
energy consumption until the full load is reached. Thus, as one expects, the
energy consumption of the fast card is higher than of the slower one. This yields
potential for energy saving when controlling the utilization of the network cards,
e.g., through different coordination features.

MDP-semantics. Via parallel composition of the feature modules described
above, including the environment features containing stochastic assumptions and
joining them with the feature controller, we obtain the MDP semantics of the
eServer product line:

M = (eServer ∥Hardware ∥Coord︸ ︷︷ ︸
eServer

∥ Env︸︷︷︸
environment

) ⋊⋉ Con

Here, eServer stands for the basic server functionality, incorporating the interplay
between software, hardware and environment, which are in turn implemented
through the feature modules Hardware, Coord and Env. This interplay is managed
in a cyclic manner through three phases: first, the hardware is allowed to be
changed according to the rules by the feature controller Con, then the control
is handed to Coord, activating and deactivating network cards according to its
switching policy, before the environment takes over for five minutes, providing
the model of the requested bandwidth from the users the server has to compete
with. Each phase corresponds to a step in M. Note that the feature modules
given above are in fact feature modules which arise by parallel composition
of feature modules standing for features in the feature diagram of the eServer
product line. Coord arises by parallel composition of the modules belonging to the
coordination feature, whereas Hardware arises by parallel composition of all the
other feature modules except the environment features, which are implemented
in the feature module Env.

5.3 Quantitative Analysis of the eServer Product Line

Besides solving the strategy synthesis problem for the eServer product line un-
der certain assumptions on the environment regarding energy consumption and

28 C. Dubslaff et al.

monetary costs (those characteristics rely on the eServer product line itself),
we also consider the amount of time the server could not deliver the bandwidth
requested by the users. This situation is called a service-level agreement (SLA)
violation (according to [30]) and may happen either when the eServer is not
appropriately equipped (the feature combination does not suffice) or when the
requested bandwidth peaks and the coordination feature deactivated too many
cards for saving energy. SLA violations also influence the money spent for the
system during runtime. Besides the costs for purchasing the eServer, the costs
for the technical staff and reconfiguration of features, we modeled costs for SLA
violations that are rather expensive. Five minutes not serving the bandwidth
requested costs $200. It is clear that a customer then tries to avoid SLA viola-
tions by purchasing a device whose reliability guarantees the desired throughput
functionality. On the other hand, a customer also tries to save initial costs when
buying the device and to save energy during runtime using the advantages of
the energy-saving switch policies.
This trade-off directly leads to the question how to choose the initial feature
combination and when to reconfigure the system by feature switches. That is,
solving the strategy synthesis problem for M regarding various quantitative
objectives concerning, e.g., energy, money and SLA violations. Although our
framework directly permits to consider arbitrary quantitative objectives which
can be stated for standard MDPs, e.g., expressed within PCTL, we restrict
ourselves to (constrained) reachability objectives in this case study. In particular,
we consider here four different strategy synthesis problems for M: maximizing
the probability of not raising an SLA violation (i.e., reliability of the device),
minimizing the expected energy consumption, money spent or time with SLA
violations, respectively, all within a fixed time horizon:

pmax = Pmax((¬Violation) U T) emin = Emin[energy](♢T)

mmin = Emin[money](♢T) vmin = Emin[violation](♢T)

Here, the type of the expected minimal costs is annotated to the query (i.e.,
energy, money and violation for SLA violations). Furthermore, Violation stands
for the set of states in M where an SLA violation occurred and T for the set of
states in M where some fixed time horizon is reached. Using the compositional
framework presented in Section 3 and its extension with variables (Section 4), we
modeled a parameterized version of the eServer product line in the guarded-
command input language of Prism. Our model is parameterized in terms of the
peak bandwidth during a day/night-cycle. Depending on this maximal band-
width, different initial feature combinations and strategies for feature switches
may provide different optimal solutions for pmax, emin, mmin, and vmin.

General Facts. For our case study we fixed certain model parameters. We chose
a time horizon of the first day the deployed system is in operation (T = 24 hours)
and solved the strategy synthesis problem for maximal bandwidths ranging from
100 MBit/s to 16 GBit/s in steps of 100 MBit/s. For each of the quantitative
objectives, we present four graphs, each showing one chart for each product con-
figuration at the deployment of the eServer. The first three show the results for

Probabilistic Model Checking for Feature-oriented Systems 29

all entry level, advanced and premium eServer products, respectively. Charts
with similar colors are representing similar multi-features, i.e., a similar number
and types of slots and network cards. In all these graphs, the difference between
the coordination features chosen can hardly be figured out, due to the large-
scaled product line, which yields many overlapping charts. Hence, we spot on
those advanced eServer products in the lower right graph which have one fast
and two slow slots and are purchased with one 10 GBit card only. This gives rise
to 12 possible charts, representing the feature combinations for the coordination
feature: colors encode the distribution feature (black, red, green, blue for Round
Robin, Weighted, Maximal Fast, and Minimal Fast features, respectively) and
the line type stands for different switching policies (solid, dotted, dashed for
Aggressive, High Savings, and Balanced, respectively).

Utility Analysis. We first look at pmax, i.e., the maximum probability of
avoiding an SLA violation within the first day of usage, corresponding to a mea-
sure of reliability for an eServer product. In Figure 6 it can be seen that when
the maximal required bandwidth is below 1 GBit/s, SLA violations can almost
surely be avoided within all kinds of servers. This is clear, since at least one card
needs to be active in the server, such that at least a 1 GBit/s can be served at
any time. When the initial feature combination is not sufficient to serve the max-
imal requested bandwidth, the maximal probability avoiding an SLA violation
during one day drops significantly. This can be seen especially at bandwidths
with 1, 2 or 10 GBit/s. In general, given the maximal bandwidth assumed to
be requested by users, the best choice for an initial feature combination is the
one corresponding to the topmost chart. The advanced products detailed in the
last graph show that the chosen switching policy has a very similar influence
on the results as determined in the original eBond case studies [30,23]. An ag-
gressive strategy almost surely raises an SLA violation when turning 10 GBit/s,
whereas plugging a new slow card and choosing a strategy with a higher band-
width assumption still retains a possibility to circumvent an SLA violation until
11 GBit/s are reached. The distribution algorithms do not influence significantly
this probability property and are almost indistinguishable.

Energy Analysis. When turning to the minimization of the expected energy
consumption, i.e., computing emin for M, it is clear that the best strategy is
to never upgrade or buy new cards, keeping the energy costs as small as possi-
ble. Hence, the smallest configuration with only one slow card initially activated
performs best with only 1.88 Watts of energy consumption for maximal band-
widths greater than 1 GBit/s (cf. Figure 7). Configurations activating a fast card
only in situations when the bandwidth is above 1 GBit/s range between the en-
ergy consumption of slow and fast cards until reaching 10 GBit/s. In between,
the charts in Figure 7 show mixed configurations, where mainly the switching
policies influence the energy consumption. The aggressive policy requires least
energy, followed by the high savings and the balanced one. This can also be seen
in our example shown in the last graph, where until reaching 80% workload of
the initial fast card, the energy consumption equals the energy characteristics of
the 10 GBit card. For higher bandwidths than 8 GBit/s, a new slow card can

30 C. Dubslaff et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

pr
ob

ab
ili

ty

maximal requested bandwidth [MBit/s]

entry level systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

pr
ob

ab
ili

ty

maximal requested bandwidth [MBit/s]

advanced systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

pr
ob

ab
ili

ty

maximal requested bandwidth [MBit/s]

premium systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 10200 10400 10600 10800 11000 11200

pr
ob

ab
ili

ty

maximal requested bandwidth [MBit/s]

advanced systems with [F=1, S=2, G=1, i=0]

Fig. 6. Evaluation of pmax for the different eServer variants

Probabilistic Model Checking for Feature-oriented Systems 31

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 e
ne

rg
y

[W
]

maximal requested bandwidth [MBit/s]

entry level systems

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 e
ne

rg
y

[W
]

maximal requested bandwidth [MBit/s]

advanced systems

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 e
ne

rg
y

[W
]

maximal requested bandwidth [MBit/s]

premium systems

 7.7

 7.75

 7.8

 7.85

 7.9

 7.95

 8

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 e
ne

rg
y

[W
]

maximal requested bandwidth [MBit/s]

advanced systems with [F=1, S=2, G=1, i=0]

Fig. 7. Evaluation of emin for the different eServer variants

32 C. Dubslaff et al.

then be plugged and thus, the energy consumption can be reduced relying on
the switching policy.

SLA Violation Analysis. When minimizing the expected number of SLA vi-
olations, i.e., computing vmin for M, similar phenomena can be observed as
within our utility analysis. The solution of the strategy synthesis problem yields
a scheduler upgrading and plugging new and fast cards as soon as the feature
controller permits it. However, as one can see in Figure 8, choosing initial con-
figurations with only slow slots, the expected percentage of time within an SLA
violation increases significantly when the maximal required bandwidth exceeds
the supported bandwidth of the server with the maximally equipped network
cards. Especially for the entry level systems, one can easily distinguish between
the systems having only one slot (raising SLA violations when the bandwidth
exceeds 1 GBit/s or 10 GBit/s) and having two slots from which at least one
is a slow slot (raising SLA violations at 2 GBit/s or 11 GBit/s). In the lower
left, premium systems stay below 12% of the time within an SLA violation if the
bandwidth is below 6 GBit/s, which then may grow very fast. This is mainly due
to the fact that a premium server system has at least six slots where cards can
be plugged. When choosing the example configuration (see the last graph), the
minimal expected percentage of time run with SLA violations with a maximal
bandwidth of 11 GBit/s is quite low with at most 3%. Note that as in eBond
case study, the balanced switching policy minimizes SLA violations always best,
followed by the high savings and aggressive policy.

Monetary Analysis. Closely related to the SLA violation time analysis is the
solution of the strategy synthesis problem which minimizes the money to be
spent for the eServer system. Figure 9 shows the results for computing mmin
for M. Choosing a system with a fast 10 GBit network interface card does not
yield additional costs after purchase, since SLA violations are very unlikely (see
utility analysis for pmax). However, when purchasing only small configurations,
expenses may exceed the costs for high equipped server products when facing
higher bandwidths due to SLA violation fees to be paid. Thus, the customer may
purchase a better performing but more expensive system if the maximal required
bandwidth is high. However, as the first graph shows, it is a good strategy to
buy an entry-level system with fast slots and upgrade cards on demand, facing
only a few of SLA violations and resulting into low monetary costs.

5.4 Scalability and Statistical Evaluation

As the case study in the last section already illustrated, it is a challenging task to
verify large-scaled product lines with thousands of feature combinations. How-
ever, using symbolic encodings for the model and information about the struc-
ture of the feature diagram, we managed to apply probabilistic model checking
for a quantitative analysis. But even after we could reduce the size of the model
encoding, we had to carefully choose the numerical methods to guarantee conver-
gence of the approximation algorithms. In this section, we deal with the model
and runtime characteristics of the eServer case study to show scalability of

Probabilistic Model Checking for Feature-oriented Systems 33

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 S
L

A
 v

io
la

tio
ns

 [
%

 o
f

tim
e]

maximal requested bandwidth [MBit/s]

entry level systems

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 S
L

A
 v

io
la

tio
ns

 [
%

 o
f

tim
e]

maximal requested bandwidth [MBit/s]

advanced systems

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 S
L

A
 v

io
la

tio
ns

 [
%

 o
f

tim
e]

maximal requested bandwidth [MBit/s]

premium systems

 0

 1

 2

 3
 4

 5

 6

 7

 10000 10200 10400 10600 10800 11000 11200 11400

ex
pe

ct
ed

 S
L

A
 v

io
la

tio
ns

 [
%

 o
f

tim
e]

maximal requested bandwidth [MBit/s]

advanced systems with [F=1, S=2, G=1, i=0]

Fig. 8. Evaluation of vmin for the different eServer variants

34 C. Dubslaff et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 m
on

ey
 [

$]

maximal requested bandwidth [MBit/s]

entry level systems

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 m
on

ey
 [

$]

maximal requested bandwidth [MBit/s]

advanced systems

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 m
on

ey
 [

$]

maximal requested bandwidth [MBit/s]

premium systems

 0

 5000

 10000

 15000

 20000

 25000

 0 2000 4000 6000 8000 10000 12000 14000 16000

ex
pe

ct
ed

 m
on

ey
 [

$]

maximal requested bandwidth [MBit/s]

advanced systems with [F=1, S=2, G=1, i=0]

Fig. 9. Evaluation of mmin for the different eServer variants

Probabilistic Model Checking for Feature-oriented Systems 35

our approach towards model checking dynamic product lines which incorporate
multi-features and hence are large-scaled.

Runtime Characteristics. The case study was carried out on an Intel Xeon
X5650 @ 2.67 GHz with 384 GBytes of RAM and using the symbolic MTBDD
engine of Prism 4.1 with a precision of 10−5. The logarithmically scaled Fig-
ure 10 shows the time needed for model checking, the number of states in the
model, and the memory consumption – each depending on the maximal band-
width assumed in the environment feature. Note that the behaviors of all feature
combinations and feature switches are encoded into one single model, such that
the model-checking time includes the computation time of all the four proper-
ties of the case study and for all 17,544 initial feature combinations. The sym-
bolic representation of the model allowed for a memory consumption of only a
few MBytes in all cases. At 16 GBit/s we had to construct a system model of
465,950,960 states and 1,072,736,675 transitions.

 0.1

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000
maximal requested bandwidth [MBit/s]

query time [Minutes]

#states [Mio.]

query memory [MBytes]

Fig. 10. Statistical evaluation of the experiments

Compact State-space Representation. Within models symbolically repre-
sented using multi-terminal binary decision diagrams (MTBDDs), states and
transitions are encoded by a binary tree-like structure where branchings stand
for decisions on variable valuations [26]. Traversing this tree-like diagram, the
decisions are not made in an arbitrary fashion, but follow a given variable or-
dering. It is well-known that the size of such diagrams crucially depends on that
variable ordering [9]. In our setting, the variables which appear in the MTBDD
representation exactly correspond to the variables Var of the feature modules
presented in Section 4, where we assume that also the locations of feature mod-
ules are encoded by variables. More formally, a variable ordering on Var is a
partial order π = (Var ,≤), where if x < y, the variable x is decided prior to y
in the MTBDD of the model. Given two sets of variables A,B ∈ Var , we write
A ≤ B iff for all x ∈ A, y ∈ B we have x ≤ y.

36 C. Dubslaff et al.

To optimize the size of the model representation of the large-scaled eServer
product lineM, we investigated several variable orderings on Var . A good heuris-
tic for variable orderings in MTBDDs is to first decide variables which are “most-
influential”, i.e., changed only at the beginning of an execution of the modeled
system but influence the systems behavior significantly [38]. This directly fits to
the product-line setting by placing variables of static features before the vari-
ables of dynamic features and to order variables of the same feature module
close together. Also environment features and the base scheduling of interplay
between hardware, software and environment can be assumed to change their
behavior quite often and should be the greatest elements of an ordering. Keeping
these facts in mind, we hence started with an intuitive variable ordering πstart

defined using the modular structure of the product line:

Con < Hardware︸ ︷︷ ︸
T<o<N

< Coordination︸ ︷︷ ︸
D<y

< eServer︸ ︷︷ ︸
phase

< Env︸︷︷︸
bandwidth<time

,

where the sets stand for variables in Var contained in the respective feature
modules, e.g., Hardware contains all variables of the feature modules T, o and
N incorporated in Hardware. phase is a variable encoding the three phases of
eServer, i.e., whether the system is in a reconfiguration, coordination or en-
vironment phase. bandwidth and time are environment variables encoding the
requested bandwidth and the time passed. Then, we applied sifting methods
[46] for dynamically optimizing variable orderings, which revealed a variable
ordering πopt:

eServer < Con < Hardware < Coordination < Env .

For comparison reasons, we also defined variable orderings ρstart and ρopt, which
denote the reverse variable orderings of πstart and πopt, respectively.

Table 1. Statistics of various variable orderings (maximal bandwidth = 2.4 GBit/s)

variable order #states #nodes memory [MBytes] query time [min]

πstart 145,984,112 116,381 2,337 17

ρstart ” 168,043 3,275 72

πopt ” 63,990 1,207 11

ρopt ” 175,467 9,253 237

Table 1 depicts the influence of these variable orderings on the performance of
solving the strategy synthesis problem for M and the four queries pmax, emin,
vmin and mmin under the assumption that the maximal requested bandwidth
is 2.4 GBit/s. As it can be seen, optimizing the variable ordering has a strong
impact on the nodes of the MTBDD required to encode the model and the time
needed for the query computation. The complete case study presented in the last
section has been carried out using the variable ordering πopt. The computations

Probabilistic Model Checking for Feature-oriented Systems 37

would have taken more than one day each for maximal bandwidths greater than
5.4 GBit/s if we would have chosen the variable ordering ρopt.

Symbolic vs. Explicit Model Checking. It is well-known that an explicit
engine is usually faster than a symbolic one when the model contains lots of
different numeric values or available memory is not the restricting factor of the
system setup. However, the operational model for product lines designed through
multi-features contain lots of symmetric behaviors due to the several instances of
multi-features and hence, symbolic methods outperform the explicit ones in our
case study. Table 2 compares the characteristics solving the strategy synthesis
problems for an eServer (again assuming 2.4 GBit/s maximal bandwidth) and
the four queries of our case study using various engines. Besides the MTBDD
engine used in the whole case study, we run the sparse and explicit engine of
Prism. Whereas the sparse engine constructs the model symbolically and then
uses an explicit sparse matrix representation for solving queries, the explicit
engine also constructs the model explicitly. This has a strong impact especially
on memory consumption, peaking at over 240 GBytes within the explicit engine.

Table 2. Statistics of various Prism engines (maximal bandwidth = 2.4 GBit/s)

engine all-in-one one-by-one

#states memory [MBytes] query time [min] query time [min]

MTBDD 145,984,112 1,207 11 3,112

sparse ” 11,167 224 3,156

explicit ” 241,991 432 802

All-in-one vs. One-by-one.Within our approach, all behaviors of the products
in the dynamic product line are encoded into a single model, similar to the
family-based approaches for product line analysis [53]. This allows to exploit the
commonalities between the products, especially in combination with a symbolic
representation of the model. However, we have shown in the last paragraph that
explicit engines for probabilistic model checking do not perform well on large
models due to memory constraints, such that checking every product in isolation
and hence dividing the model into smaller parts might still yield a faster analysis
method. Table 2 also depicts a comparison between the explicit and symbolic
engines of Prism used to analyze the 17,544 products of the eServer product
line one-by-one when assuming a maximal bandwidth of 2.4 GBit/s. The largest
model of a single product in the product line contains 120,575 states. Both, the
MTBDD and sparse engine computations took more than two days. Although the
explicit engine turned out to be the fastest engine for the one-by-one approach,
it took more than 70 times longer than the all-in-one MTBDD-approach.

38 C. Dubslaff et al.

6 Conclusions

We presented a compositional modeling framework for dynamic product lines
that relies on annotated versions of probabilistic automata. The implementation
of features and the behavior of possibly unknown or only partially known imple-
mentations of external features are represented by feature modules, which are
probabilistic automata with guards and special switch transitions for the feature
changes. Constraints on the activation and deactivation of features during run-
time of the system are imposed by feature controllers, probabilistic automata
synchronizing with switch transitions of feature modules. Most of the family-
based verification approaches for static and nonprobabilistic product lines use
monolithic models including all behaviors of the products in the product line.
Our approach with feature modules and controllers allows to generate such op-
erational models in a compositional way.

Dynamic product lines modeled within our framework yield an MDP seman-
tics, such that many problems for feature-oriented systems can be solved using
standard algorithms. This includes model-checking problems for properties re-
ferring to feature combinations, which till now required specialized algorithms
even in the nonprobabilistic setting [12]. We also presented a translation from our
framework into guarded-command languages used, e.g., by the prominent proba-
bilistic model checker Prism. For a case study concerning an energy-aware server
product line (called eServer), we used Prism to solve the strategy synthesis
problem that asks for strategies to trigger feature combination changes accord-
ing to various quantitative properties. We also placed the focus on large-scaled
product lines which contain thousands of valid feature combinations and can be
described elegantly through multi-feature diagrams. For large-scaled eServer
models, we compared different model-checking engines and showed that symbolic
approaches clearly outperform explicit ones.

There are many other interesting variants of the strategy synthesis problem
that are also solvable by known algorithms applicable to the MDP semantics
of our framework. One might distinguish between switch events that are indeed
controllable and those that cannot be enforced or prevented, but are triggered by
the environment. In this case, the arising MDP can be seen as a stochastic game
structure, where the controller and the environment are opponents and the task
to generate an optimal strategy for the controller reduces to well-known game-
based problems [15,24,21,10]. Similarly, one might take into account that also
the feature modules can behave nondeterministically.

A challenge remaining for further work is to integrate our feature-oriented
formalisms into model-checking tools to ease their use for software developers,
enabling to integrate quantitative analyses into the workflow of product-line
development. This includes the interpretation and compact output of the strate-
gies solving the strategy synthesis problem, till now only internally computed by
existing model-checking tools. Also investigations on feature-dependent multi-
objectives are important in this context [4]. Such requirements would, e.g., enable
to check whether the trade-off between energy consumption and the time without
SLA violations is better for premium or advanced eServer variants [3].

Probabilistic Model Checking for Feature-oriented Systems 39

References

1. S. Apel and D. Hutchins. A calculus for uniform feature composition. ACM
Transactions on Programming Languages and Systems, 32(5), 2010.

2. S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model superimposition in software
product lines. In Proc. of the 2nd Conference on Theory and Practice of Model
Transformations (ICMT), volume 5563 of LNCS, pages 4–19. Springer, 2009.

3. C. Baier, C. Dubslaff, J. Klein, S. Klüppelholz, and S. Wunderlich. Probabilistic
model checking for energy-utility analysis. In Horizons of the Mind. A Tribute to
Prakash Panangaden, volume 8464 of LNCS, pages 96–123. Springer, 2014.

4. C. Baier, C. Dubslaff, S. Klüppelholz, M. Daum, J. Klein, S. Märcker, and S. Wun-
derlich. Probabilistic model checking and non-standard multi-objective reasoning.
In Proc. of the 17th Conference on Fundamental Approaches to Software Engineer-
ing (FASE), volume 8411 of LNCS, pages 1–16. Springer, 2014.

5. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

6. C. Baier and M. Kwiatkoswka. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11(3):125–155, 1998.

7. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models
20 years later: A literature review. Information Systems, 35(6):615–636, 2010.

8. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. of the 15th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 1026 of LNCS, pages 499–
513, Berlin, 1995. Springer.

9. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35:677–691, 1986.

10. K. Chatterjee, M. Jurdzinski, and T. Henzinger. Quantitative simple stochastic
parity games. In Proc. of the 15th ACM-SIAM Symposium on Discrete algorithms
(SODA), pages 121–130. SIAM, 2004.

11. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8:244–263, 1986.

12. A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic model checking
of software product lines. In Proc. of the 33rd Conference on Software Engineering
(ICSE), pages 321–330. ACM, 2011.

13. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking lots of systems: Efficient verification of temporal properties in software
product lines. In Proc. of the 32rd Conference on Software Engineering (ICSE),
pages 335–344. ACM, 2010.

14. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, 2001.

15. A. Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992.

16. M. Cordy, A. Classen, P. Heymans, A. Legay, and P.-Y. Schobbens. Model checking
adaptive software with featured transition systems. In Assurances for Self-Adaptive
Systems, volume 7740 of LNCS, pages 1–29. Springer, 2013.

17. M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. Beyond boolean product-
line model checking: Dealing with feature attributes and multi-features. In Proc. of
the 35rd Conference on Software Engineering (ICSE), pages 472–481. IEEE Press,
2013.

40 C. Dubslaff et al.

18. K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing cardinality-based fea-
ture models and their specialization. Software Process: Improvement and Practice,
10(1):7–29, 2005.

19. F. Damiani and I. Schaefer. Dynamic delta-oriented programming. In Proc. of the
15th Software Product Line Conference (SPLC), Volume 2, pages 34:1–34:8. ACM,
2011.

20. L. de Alfaro. Computing minimum and maximum reachability times in probabilis-
tic systems. In Proc. of the 10th Conference on Concurrency Theory (CONCUR),
volume 1664 of LNCS, pages 66–81. Springer, 1999.

21. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games.
Journal of Computer and System Sciences, 68(2):374–397, 2004.

22. T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini. A dynamic software product
line approach using aspect models at runtime. In Proc. of the 1st Workshop on
Composition and Variability, 2010.

23. C. Dubslaff, S. Klüppelholz, and C. Baier. Probabilistic model checking for energy
analysis in software product lines. In Proc. of the 13th Conference on Modularity
(MODULARITY), pages 169–180. ACM, 2014.

24. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
25. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated verification

techniques for probabilistic systems. In Proc. of the 11th School on Formal Methods
for the Design of Computer, Communication and Software Systems (SFM), volume
6659 of LNCS, pages 53–113. Springer, 2011.

26. M. Fujita, P. McGeer, and J.-Y. Yang. Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System
Design, 10(2-3):149–169, 1997.

27. D. Gelernter and N. Carriero. Coordination languages and their significance. Com-
munications of the ACM, 35(2):96–107, 1992.

28. C. Ghezzi and A. M. Sharifloo. Model-based verification of quantitative non-
functional properties for software product lines. Information & Software Technol-
ogy, 55(3):508–524, 2013.

29. H. Gomaa and M. Hussein. Dynamic software reconfiguration in software product
families. In Proc. of the 5th Workshop on Software Product-Family Engineering
(PFE), volume 3014 of LNCS, pages 435–444. Springer, 2003.

30. M. Hähnel, B. Döbel, M. Völp, and H. Härtig. eBond: Energy saving in het-
erogeneous R.A.I.N. In Proc. of the 4th Conference on Future Energy Systems
(e-Energy), pages 193–202, New York, NY, USA, 2013. ACM.

31. S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic software product
lines. IEEE Computer, 41(4):93–95, 2008.

32. B. Haverkort. Performance of Computer Communication Systems: A Model-Based
Approach. John Wiley & Sons, Inc., 1998.

33. J. D. Hay and J. M. Atlee. Composing features and resolving interactions. In Proc.
of the 8th Symposium on Foundations of Software Engineering (SIGSOFT), pages
110–119. ACM, 2000.

34. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for
automatic verification of probabilistic systems. In Proc. of the 12th Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 3920 of LNCS, pages 441–444. Springer, 2006.

35. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-
90-TR-21, Carnegie-Mellon University, November 1990.

Probabilistic Model Checking for Feature-oriented Systems 41

36. S. Katz. A superimposition control construct for distributed systems. ACM Trans-
actions on Programming Languages and Systems, 15(2):337–356, 1993.

37. V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.
38. S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Logic verification

using binary decision diagrams in a logic synthesis environment. In Proc. of the
IEEE Conference on Computer-Aided Design (ICCAD), pages 6–9, 1988.

39. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
40. J.-V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane. Compositional veri-

fication of software product lines. In Proc. of the 10th Conference on Integrated
Formal Methods (IFM), volume 7940 of LNCS, pages 109–123. Springer, 2013.

41. M. Noorian, E. Bagheri, and W. Du. Non-functional properties in software product
lines: A taxonomy for classification. In Proc. of the 24th Conference on Software
Engineering & Knowledge Engineering (SEKE), pages 663–667. Knowledge Sys-
tems Institute Graduate School, 2012.

42. G. A. Papadopoulos and F. Arbab. Coordination models and languages. Advances
in Computers, 46:329–400, 1998.

43. M. Plath and M. Ryan. Feature integration using a feature construct. Science of
Computer Programming, 41(1):53–84, 2001.

44. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1994.

45. M. Rosenmüller, N. Siegmund, S. Apel, and G. Saake. Flexible feature binding in
software product lines. Automated Software Engineering, 18(2):163–197, 2011.

46. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proc. of the IEEE/ACM Conference on Computer-Aided Design (ICCAD), pages
42–47. IEEE Computer Society, 1993.

47. J.-G. Schneider, M. Lumpe, and O. Nierstrasz. Agent coordination via scripting
languages. In Coordination of Internet Agents: Models, Technologies, and Appli-
cations, pages 153–175. Springer, 2001.

48. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

49. R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

50. N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel, and S. S.
Kolesnikov. Scalable prediction of non-functional properties in software product
lines: Footprint and memory consumption. Information & Software Technology,
55(3):491–507, 2013.

51. N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and G. Saake. Mea-
suring non-functional properties in software product line for product derivation. In
Proc. of the 15th Asia-Pacific Software Engineering Conference (APSEC), pages
187–194. IEEE, 2008.

52. M. Varshosaz and R. Khosravi. Discrete time Markov chain families: modeling and
verification of probabilistic software product lines. In Proc. of the 17th Software
Product Line Conference Co-located Workshops, pages 34–41. ACM, 2013.

53. A. von Rhein, S. Apel, C. Kästner, T. Thüm, and I. Schaefer. The PLA model: On
the combination of product-line analyses. In Proc. of the 7th Workshop on Vari-
ability Modelling of Software-intensive Systems (VaMoS), pages 14:1–14:8. ACM,
2013.

54. J. White, B. Dougherty, D. C. Schmidt, and D. Benavides. Automated reasoning
for multi-step feature model configuration problems. In Proc. of the 13th Software
Product Line Conference (SPLC), pages 11–20. ACM, 2009.

	Probabilistic Model Checking for Feature-oriented Systems

