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A B S T R A C T
The compilation of feature models into binary decision diagrams (BDDs) is a major challenge in
the area of configurable systems analysis. For many large-scale feature models such as the variants
of the prominent Linux product line, BDDs could not yet be obtained due to exceeding state-of-the-
art compilation capabilities. However, until now BDD compilation has been mainly considered on
standard settings of existing BDD tools, barely exploiting advanced techniques or tuning parameters.

In this article, we conduct a comprehensive study on how to configure various techniques from
the literature and thus improve compilation performance for feature models given in conjunctive
normal form. Specifically, we evaluate preprocessing for satisfiability solving (SAT), variable and
clause ordering heuristics, as well as non-standard and multi-threaded BDD construction schemes.
Our experiments on recent feature models demonstrate that BDD compilation of feature models
greatly benefits from these techniques. We show that our methods enable BDD compilations of many
large-scale feature models within seconds, including the whole ECOS feature model collection for
which a compilation was previously infeasible.

1. Introduction
In the feature-oriented modeling approach, features en-

capsulate optional or incremental functionalities of a soft-
ware system. Each of the features can be configured to be
included or excluded in the software, leading to software
product lines (SPLs) as all valid configurations that can
yield an actual software product [6, 60, 5]. Commonly,
feature models such as feature diagrams are used to specify
the set of valid configurations in an SPL [37]. Figure 1a
shows an example of a feature diagram for a simple email
SPL. The analysis of feature models is challenging, as the
number of valid configurations is usually exponential in the
number of features, and intricate side constraints need to be
obeyed. Automated analysis of feature models is hence an
active field of research [7, 23, 59, 28, 58]. These approaches
exploit formal analyses of feature models based on their
Boolean function semantics with abstract features modeled
as Boolean variables: each variable is interpreted to be 𝚝𝚛𝚞𝚎
if the feature is included in a configuration, and 𝚏𝚊𝚕𝚜𝚎

otherwise. To benefit from recent advances in automated
reasoning [9], the common approach is to translate feature
models into propositional logic formulas in conjunctive nor-
mal form (CNF), i.e., conjunctions of clauses, which them-
selves are disjunctions of literals [7, 60]. CNFs constitute
the standard input format for satisfiability (SAT) solvers, and
many techniques for their manipulation and reasoning have
been presented in the literature [9]. While reasoning tasks
expressible through single SAT queries are known to scale
well even on large feature models, more advanced tasks that
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involve counting the number of valid configurations through
model counting (#SAT) or sophisticated feature model ma-
nipulation easily reach scalability boundaries [7, 58].

Knowledge compilation addresses these scalability chal-
lenges by transforming a model representation into another
one, the latter admitting algorithmic advantages for specific
tasks [14, 19]. For instance, compiling CNF into deter-
ministic decomposable negation normal form (d-DNNF)
enables to efficiently answer #SAT and hence uniform ran-
dom sampling [18]. Reduced ordered binary decision dia-
grams (BDDs) [1, 13] constitute an even more versatile rep-
resentation of Boolean functions than d-DNNFs, with many
desirable properties such as efficient Boolean operators,
SAT solving, #SAT computation, uniform random sampling,
and—most distinctly—efficient equivalence checking [39].
BDDs are directed acyclic graphs where inner decision
nodes are labeled by Boolean variables and have two outgo-
ing edges. Following these edges specifies the assignment
of the variable to 𝚝𝚛𝚞𝚎 or 𝚏𝚊𝚕𝚜𝚎, respectively. Outcomes
are modeled by two terminal nodes 1 and 0 , standing for
𝚝𝚛𝚞𝚎 and 𝚏𝚊𝚕𝚜𝚎 evaluation, respectively. Reduction rules
ensure that no redundant information by means of irrelevant
decisions or duplicated isomorphic subdiagrams are con-
tained in the diagram, leading to a concise representation
of Boolean functions. Further, BDDs are ordered, i.e., the
variables of decision nodes follow a given variable order.
Reductions and ordering variables render BDDs canonical
and enable efficient BDD operations and equivalence check-
ing. Figure 1c shows an example BDD representing the valid
configurations modeled in the feature diagram of Figure 1a.

The manifold benefits of BDDs as a data structure for
Boolean functions come at a cost. Notably, their size can be
exponential in the number of variables, such that the memory
required to represent the BDD exceeds memory constraints.
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(a) Feature diagram

𝜙 = m ∧
[

∨ (c, a, r) → e
]

∧
[

e → ⋆(c, a, r)
]

𝜙′ = m ∧ (¬c ∨ e) ∧ (¬a ∨ e) ∧ (¬r ∨ e)
∧ (¬e ∨ c ∨ a ∨ r) ∧ (¬e ∨ ¬c ∨ ¬a)
∧ (¬e ∨ ¬c ∨ ¬r) ∧ (¬e ∨ ¬a ∨ ¬r)

ℭ =
{

{m}, {¬c, e}, {¬a, e}, {¬r, e},
{¬e, c, a, r}, {¬e,¬c,¬a},
{¬e,¬c,¬r}, {¬e,¬a,¬r}

}

(b) Propositional formula 𝜙 and equiv-
alent CNF representations 𝜙′ and ℭ
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Figure 1: Three symbolic representations of a feature model for a simple configurable email system.
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Figure 2: Variable and clause hypergraph for the CNF ℭ from Figure 1b.

The classical approach to construct BDDs is by a stepwise
application of binary operations. Memory constraints then
can be already exceeded during construction, even though
the BDD representation for the targeted Boolean function
would be small enough to fit into memory. This phenomenon
is well-known as peak-size explosion problem and frequently
arises when trying to construct BDDs for Boolean functions
given in CNF [49, 22]. Typically, a BDD compilation from
CNF formulas is performed by first constructing BDDs
that represent the clauses of the CNF by disjunctive oper-
ations on literal BDDs, followed by joining them to a single
BDD through applying conjunctive operations [23, 46, 16].
Such a stepwise CNF-to-BDD compilation corresponds to
a bottom-up traversal of the abstract syntax tree of the
CNF, assuming a left-deep bracketing of the clauses. Recent
approaches also consider different bracketings, e.g., to yield
balanced trees [46, 16, 48, 61, 21]. Besides following a
bottom-up construction of BDDs from CNFs, top-down con-
structions [34] and combinations with SAT-based techniques
to guide through CNFs have also been established [30].

The size of a BDD and thus the efficiency of operations
is heavily influenced by the order of its variables, a well-
known issue whose optimization involves to solve an NP-
complete problem [11]. The variable-ordering problem is
usually tackled by both static and dynamic variable-ordering
heuristics. Static heuristics aim at establishing a good initial
order [50] before starting the construction of the BDD.
For CNFs, the standard heuristic is FORCE, a local search

heuristic that moves dependent variables closer together [3].
MINCE is another prominent static heuristic that relies on
recursively cutting hypergraphs generated from CNFs [4].
Dynamic heuristics reduce the size of the BDD during
construction, most prominently through sifting [52, 23, 22].
For each variable, sifting tries every position in the current
order and leaves it at the position with the smallest BDD
size. While not as well-studied, variable-ordering heuristics
applied on the dual problem to order clauses have shown
to yield improvements in compilation performance and to
avoid the peak-size explosion problem [4, 21].

Due to the superior position of BDDs in the knowledge
compilation landscape [18], BDD compilation has raised
much attention in the context of feature model analysis [44,
23, 59, 28, 58, 27, 21]. Existing work reports that under cer-
tain conditions, BDD compilation can scale well to feature
models given as feature diagrams with up to 2,000 features
and only few side-constraints [44]. However, real-world
SPLs usually exhibit many side-constraints, which render
dedicated techniques exploiting the hierarchical structure
of feature diagrams far less effective [35]. For instance,
when compiling the SPL corresponding to the 116 tar-
gets of the embedded configurable operating system (ECOS,
v3.0) [8, 38],1 memory or time bounds are easily exceeded

1The ECOS product lines are also referred to as the CDL collection in
the literature, after the component definition language developed for ECOS.
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even though these models contain only around 1,000 fea-
tures [58]. For such models, advanced techniques are re-
quired to successfully construct their BDDs [27, 21]. More
complex real-world feature models such as the well-known
Linux kernel product line [54, 59] are still out of reach [28].
Towards advancing BDD compilation capabilities on real-
world feature models, recent approaches focus on structural
properties exhibited by such models that can be exploited.
Notably, it is well known that real-world feature models con-
tain many features in ONE-HOT groups, where in any valid
configuration exactly one of the group’s features is active.
Using a specialized construction for such groups derived
from feature diagrams, the tool LOGIC2BDD [23] enabled
the construction of a real-world feature model with 17,365
features. There exist several methods to recover ONE-HOT
groups from CNFs, predominantly employed as a prepro-
cessing step to speed up SAT and #SAT solvers [29, 57]. For
feature-model analysis, this idea of ONE-HOT factorization
has recently been used to improve the FORCE variable-
ordering heuristic [27]. Despite these advancements, litera-
ture on BDD compilation for feature-model analysis mainly
focused on the comparison of existing tools and BDD en-
gines in their standard configuration, only partly improving
core aspects such as the variable ordering [28].
Our Approach. In this article, we investigate how various
BDD construction techniques and configurations impact per-
formance when compiling real-world feature models given
in CNF. For this, we build upon and extend our work pre-
sented at the SPLC conference [21], where we conducted an
initial comparison of existing BDD construction techniques.
While most of the considered techniques were well known
in the area of BDDs, they have barely been considered in
combination and in the context of feature models [28, 48].
On a meta level, we hence analyze a product line itself
(see Figure 6), where each configuration corresponds to a
combination of techniques for CNF-to-BDD compilation.
Specifically, we configure BDD compilation based on the
following techniques:

(1) Equivalence-preserving preprocessing with PMC [41]
or XOR and ONE-HOT2 factorization [51].

(2) FORCE [3] or MINCE [4] variable and clause order-
ing heuristics.

(3) Left-deep or balanced CNF clause bracketing [48].
(4) Sequential or multi-threaded BDD construction [31].
(5) BDD compilers LOGIC2BDD [23] or OXIDD [31].

To the best of our knowledge, prior work on feature-model
analysis has only considered sequential left-deep construc-
tions with and without FORCE variable ordering and, in
part, ONE-HOT factorization. We are the first to extensively
evaluate those and other configurations on feature models.
Moreover, we are not aware of any study assessing the

2Here, we identify with XOR the binary operation that extends to the
odd-parity function for higher arities, while we denote alternative group
encodings by ONE-HOT, following the standard in circuit design. Note that
XOR and ONE-HOT agree in the binary case and some literature uses both
terms interchangeably.

impact of SAT preprocessing or FORCE clause ordering on
CNF benchmarks.

To configure and analyze CNF-to-BDD compilation, we
developed DIMAGIC [33], a tool that supports all afore-
mentioned configurations. While the previous version of
DIMAGIC [36, 21] was implemented in Python, we de-
veloped DIMAGIC 2.0 in Rust to enhance performance in
feature model manipulations. This is particularly crucial for
ReMINCE, our optimized variant of the MINCE heuristic,
as well as our implementation of XOR and ONE-HOT fac-
torization. ReMINCE mitigates construction errors found in
the original MINCE binary [4] and uses the state-of-the-art
hypergraph cutter KAHYPAR [53] for high-quality decom-
position of CNF hypergraphs. As BDD engines, CUDD [56]
serves as backend for the state-of-the-art feature model BDD
compiler LOGIC2BDD [23] and OXIDD [31] provides the
multi-threaded BDD engine with a dedicated CNF-to-BDD
compilation interface.

We conduct experiments to evaluate BDD compilation
configurations using a recent benchmark set of current fea-
ture models [26]. The number of all such configurations is
exponential in the number of techniques, leading to almost
500 possible configurations even in the simplified setting we
consider in our experiments. We hence adopt a structured
approach towards finding configurations that perform best
for feature models, also relying on the insights gained in
previous experiments [21]. For this, we first analyze differ-
ent preprocessing techniques, then ordering heuristics, and
finally different construction schemes. After determining
the best-performing configuration, we investigate its perfor-
mance on the large feature models of the 116 ECOS product
lines [8, 38] that were considered out of reach for CNF-
to-BDD compilation in its entirety. Our tool DIMAGIC 2.0
and a replication package to reproduce our experiments are
publicly available [33].
Our Contributions. To summarize, we conduct an ex-
tensive analysis on the performance of different CNF-to-
BDD compilation configurations. We show that configur-
ing the compilation has great impact on performance. In
particular, the best performance within the configuration
space is achieved by combining PMC preprocessing with
ONE-HOT factorization, ReMINCE or MINCE variable and
clause ordering, and multi-threaded construction following
a balanced CNF bracketing with OXIDD. This configuration
enables the compilation of each of the 116 ECOS feature
models in less than 4 seconds on average.
Compared to the conference version [21], we contribute:

• DIMAGIC 2.0, a new implementation for configuring
CNF-to-BDD compilation,

• ReMINCE, a reimplementation of MINCE that is
open source, configurable, and mitigates construction
errors of the original MINCE,

• advanced preprocessing with ONE-HOT and XOR
factorization,

• theoretical considerations on BDD sizes depending on
cutsets and hypergraph-based ordering heuristics,
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• extended evaluation on a larger configuration space,
including experiments on the performance of OXIDD
and LOGIC2BDD with ONE-HOT factorization, and

• enhanced explanations, figures, and examples.

2. Foundations
In this section, we recall preliminaries and fix notations.

The powerset of a set 𝑌 is denoted by 2𝑌. We denote
by ℕ<𝑖 the set of non-negative integers less than 𝑖, and
by |𝑌 | the number of elements in 𝑌, e.g., |ℕ<𝑖| = 𝑖.
Further, ℕ⩽𝑖 ≔ ℕ<𝑖+1. A total order over 𝑌 is a bi-
jection 𝜏 ∶ ℕ<|𝑌 | → 𝑌. Such an order can be seen as
an ordered list [𝜏(0),… , 𝜏(|𝑌 |−1)] where no element ap-
pears twice. Given total orders 𝜏𝑌 and 𝜏𝑍 over disjoint sets
𝑌 and 𝑍, respectively, we define their concatenation as
𝜏𝑌 ++ 𝜏𝑍 ∶ ℕ<|𝑌 |+|𝑍|

→ 𝑌 ∪𝑍 where

(𝜏𝑌 ++ 𝜏𝑍 )(𝑖) ≔

{

𝜏𝑌 (𝑖) if 𝑖 < |𝑌 |
𝜏𝑍 (𝑖 − |𝑌 |) otherwise.

Configurations. Throughout this article, we assume that a
configurable system over a fixed set of 𝑘 features is given.
The set of features is identified with a set of Boolean vari-
ables 𝑋 of size |𝑋| = 𝑘. A configuration is a mapping
𝛾 ∶ 𝑋 → {0, 1}, where 𝛾(𝑥) = 0 indicates that feature 𝑥 ∈ 𝑋
is inactive in the configuration, while 𝛾(𝑥) = 1 stands for
feature 𝑥 ∈ 𝑋 being active. We denote the set of all possible
configurations by𝖢𝗈𝗇𝖿 (𝑋). A Boolean function over config-
urations is as a mapping 𝑓 ∶ 𝖢𝗈𝗇𝖿 (𝑋) → {0, 1}. Constant
Boolean functions 𝟎, 𝟏∶ 𝖢𝗈𝗇𝖿 (𝑋) → {0, 1} are defined by
𝟎(𝛾) ≔ 0 and 𝟏(𝛾) ≔ 1 for all 𝛾 ∈ 𝖢𝗈𝗇𝖿 (𝑋), respectively.
A partial configuration 𝛿∶ 𝑋 ⇀ {0, 1} is a partial mapping
defined only on the domain 𝖣𝗈𝗆(𝛿) ⊆ 𝑋 of features. Given
a Boolean function 𝑓 ∶ 𝖢𝗈𝗇𝖿 (𝑋) → {0, 1}, we write 𝑓 |𝛿for the Boolean function 𝑓 |𝛿 ∶ 𝖢𝗈𝗇𝖿 (𝑋) → {0, 1} derived
from 𝑓 by setting features in 𝖣𝗈𝗆(𝛿). Formally, 𝑓 |𝛿(𝛾) ≔
𝑓 (𝛾𝛿) where 𝛾𝛿 ∶ 𝑋 → {0, 1} and

𝛾𝛿(𝑥) ≔

{

𝛿(𝑥) if 𝑥 ∈ 𝖣𝗈𝗆(𝛿)
𝛾(𝑥) otherwise.

Feature Models. Feature models specify valid configura-
tions as a subset of 𝖢𝗈𝗇𝖿 (𝑋), where feature diagrams [37]
constitute the most commonly used representation. Figure 1a
depicts an example of a feature diagram specifying an email
product line over features 𝑋 = {m, s, e, c, a, r}. The seman-
tics of a feature diagram is a Boolean function over config-
urations that is given by some propositional formula, e.g., 𝜙
in Figure 1b for the email system example. Essentially, this
semantics interprets the hierarchical structure of the diagram
and its decompositions: (1) the root is always active, (2) child
features imply parent features, (3) parent features imply a
child group, where AND groups require all their features
to be enabled, OR groups require at least one, and ONE-
HOT groups exactly one of their features, (4) features in
an AND group may be marked as optional, and (5) arrows

between features indicate additional implications as cross-
tree constraints. In Figure 1a, the m feature has an AND
group comprising optional features s and e, where the latter
imposes a ONE-HOT group ⋆(c, a, r).
Conjunctive Normal Forms. Towards a formal analysis of
feature models, their propositional logic formula is usually
translated into conjunctive normal form (CNF), i.e., into a
formula of the form

𝜓 =
⋀𝑚−1

𝑖=0

⋁𝑚𝑖−1
𝑗=0

𝓁𝑖,𝑗

comprising 𝑚 ∈ ℕ clauses, where clause 𝑖 ∈ ℕ<𝑚 consists
of 𝑚𝑖 ∈ ℕ literals 𝓁𝑖,𝑗 ∈ {𝑥,¬𝑥 ∣ 𝑥 ∈ 𝑋} for 𝑗 ∈ ℕ<𝑚𝑖 .Such CNF formulas 𝜓 are conveniently given as a clause
set ℭ = {𝐶𝑖 ∣ 𝑖 ∈ ℕ<𝑚} where 𝐶𝑖 = {𝓁𝑖,𝑗 ∣ 𝑗 ∈ ℕ<𝑚𝑖}for 𝑖 ∈ ℕ<𝑚. For instance, the formula 𝜙 for the feature
model in Figure 1b is equivalent to the CNF 𝜙′, and 𝜙′ can
be represented as the given set representation CNF ℭ.

To ease notations, we define a negation operation ∼ on
literals 𝓁 ∈ {𝑥,¬𝑥} as

∼𝓁 ≔

{

𝑥 if 𝓁 = ¬𝑥
¬𝑥 otherwise.

Further, we write 𝖵𝖺𝗋𝗌(𝐶) for the set of variables in a
clause 𝐶 , i.e., 𝖵𝖺𝗋𝗌(𝐶) = {

𝑥 ∈ 𝑋 ∣ 𝑥 ∈ 𝐶 or ¬𝑥 ∈ 𝐶
}.

Formulas in extended CNF (XCNF) also allow the use
of other clause operators than disjunctions “∨”, namely
XOR “⊕” and ONE-HOT “⋆”. Formally, an XCNF is given
as a triple ℭ = ⟨ℭ∨,ℭ⊕,ℭ⋆⟩ of sets of clauses where we
call any clause in ℭ∨ a disjunctive clause, in ℭ⊕ an XOR
clause, and in ℭ⋆ a ONE-HOT clause. We identify ℭ also
with the set of all clauses ℭ∨∪ℭ⊕∪ℭ⋆. For a configuration
𝛾 ∈ 𝖢𝗈𝗇𝖿 (𝑋) and variable 𝑥 ∈ 𝑋, we set 𝛾(¬𝑥) = 1 iff
𝛾(𝑥) = 0. The semantics of a clause 𝐶 is given by Boolean
functions J𝐶K◦ ∶ 𝖢𝗈𝗇𝖿 (𝑋) → {0, 1} where

• J𝐶K∨(𝛾) = 1 iff ∑

𝓁∈𝐶 𝛾(𝓁) ⩾ 1,
• J𝐶K⊕(𝛾) = 1 iff ∑

𝓁∈𝐶 𝛾(𝓁) is odd, and
• J𝐶K⋆(𝛾) = 1 iff ∑

𝓁∈𝐶 𝛾(𝓁) = 1.
The semantics of an XCNF ℭ is defined as a Boolean
function JℭK∶ 𝖢𝗈𝗇𝖿 (𝑋) → {0, 1} where JℭK(𝛾) = 1 iff
for all operators ◦ ∈ {∨, ⊕, ⋆} and each 𝐶 ∈ ℭ◦ it holds
that J𝐶K◦(𝛾) = 1. We say that a configuration 𝛾 satisfies
a Boolean function 𝑓 iff 𝑓 (𝛾) = 1, and use 𝖲𝖠𝖳(𝑓 ) ≔
{𝛾 ∈ 𝖢𝗈𝗇𝖿 (𝑋) ∣ 𝑓 (𝛾) = 1} to denote the set of satisfying
configurations. Similarly, we say that 𝛾 satisfies a clause
𝐶 ∈ ℭ◦ iff J𝐶K◦(𝛾) = 1 and an XCNF ℭ iff JℭK(𝛾) = 1.
A Boolean function, clause, or XCNF is satisfiable iff there
exists a 𝛾 ∈ 𝖢𝗈𝗇𝖿 (𝑋) that satisfies it. Deciding whether ℭ is
satisfiable is referred to as SAT problem. Counting models
of ℭ, i.e., computing | 𝖲𝖠𝖳(JℭK)|, is referred to as #SAT
problem. A clause 𝐶 ∈ ℭ◦ subsumes (or implies) a clause
𝐶 ′∈ ℭ∙ iff 𝖲𝖠𝖳(J𝐶K◦) ⊆ 𝖲𝖠𝖳(J𝐶 ′K∙). In particular, a ONE-
HOT clause 𝐶 subsumes an XOR clause 𝐶 , which in turn
subsumes a disjunctive clause 𝐶 .
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𝐿 𝐵 𝑀

Figure 3: Example of a balanced mincut, assuming unit weights
for all hyperedges. Cut hyperedges and the cutting separating
𝐵 and 𝑀⧵𝐵 (dotted line) are highlighted in red.

Hypergraphs. A weighted hypergraph  = ⟨𝑉,𝐸,𝑤⟩ is a
tuple comprising a set of vertices 𝑉, hyperedges𝐸 ⊆ 2𝑉, and
hyperedge weights 𝑤∶ 𝐸 → ℝ+. Given a set of hyperedges
𝐷 ⊆ 𝐸, we denote their cumulative weight by 𝑤(𝐷) ≔
∑

𝑒∈𝐷𝑤(𝑒). Given an imbalance factor 𝜀 ∈ (0, 1∕2) and a
set of vertices 𝑀 ⊆ 𝑉, we call a set of vertices 𝐵 ⊆ 𝑀 an
𝜀-balanced cut of 𝑀 if 𝐵 and 𝑀⧵𝐵 have nearly equal size:

max
{

|𝐵|, |𝑀⧵𝐵|
}

⩽ (1 + 𝜀)
⌈

|𝑀|

2

⌉

.

For a given a set of vertices 𝐴 ⊆ 𝑉, we define 𝖢𝗎𝗍𝗌𝖾𝗍(𝐴)as the set of edges in  cut by 𝐴, i.e.,
𝖢𝗎𝗍𝗌𝖾𝗍(𝐴) ≔

{

𝑒 ∈ 𝐸 ∣ 𝑒 ∩ 𝐴 ≠ ∅, 𝑒 ∩ (𝑉 ⧵𝐴) ≠ ∅
}

.

The cut weight of 𝐴 is the cumulative weight of edges in
the cutset of 𝐴, i.e., 𝑤(𝖢𝗎𝗍𝗌𝖾𝗍(𝐴)

). To describe cuts 𝐵
of 𝑀 with minimal cut weight, we extend the scope of
the cut to the whole set of vertices. A left-context of 𝑀 is
a set of vertices 𝐿 ⊆ 𝑉 ⧵𝑀 . Given a left-context 𝐿, the
right-context of 𝑀 is defined as the set of vertices 𝑅 ≔
𝑉 ⧵ (𝑀 ∪ 𝐿). Intuitively, left-context 𝐿 and right-context
𝑅 will be associated with a cut 𝐵 and 𝑀 ⧵ 𝐵, respectively,
but not be considered when determining cutsets. Then, we
call 𝐵 an 𝜀-balanced mincut of 𝑀 in the left-context of 𝐿 if
for all 𝜀-balanced cuts 𝐵′of 𝑀 we have

𝑤
(

𝖢𝗎𝗍𝗌𝖾𝗍(𝐿 ∪ 𝐵)
)

⩽ 𝑤
(

𝖢𝗎𝗍𝗌𝖾𝗍(𝐿 ∪ 𝐵′)
)

.

The setting of such a mincut in a left-context is illustrated
in Figure 3. Computing such mincuts involves solving an
NP-complete problem. To this end, many heuristics have
been implemented to determine 𝜀-balanced mincuts or ap-
proximations thereof, i.e., 𝜀-balanced cuts that are nearly
minimal [55]. We will assume such an implementation as
an oracle where 𝜀-BalancedMincut(𝐿,𝑀) returns a set of
vertices 𝐵 as above.

Let 𝜋 ∶ ℕ<|𝑉 |

→ 𝑉 be a total order on the hypergraph
vertices, 𝑖 ∈ ℕ<|𝑉 |−1, and 𝑉 𝜋

𝑖 ⊆ 𝑉 be the set of the first
𝑖 + 1 vertices in 𝜋, i.e., 𝑉 𝜋

𝑖 ≔ {𝜋(𝑗) ∣ 𝑗 ∈ ℕ<𝑖+1}. Then,
𝖢𝗎𝗍𝗌𝖾𝗍(𝑉 𝜋

𝑖 ) is the 𝑖-th cutset of 𝜋 in  and the cutwidth of
𝜋 is definedmax𝑖𝑤

(

𝖢𝗎𝗍𝗌𝖾𝗍(𝑉 𝜋
𝑖 )

). The span of a hyperedge
𝑒 ∈ 𝐸 is max𝑣∈𝑒 𝜋−1(𝑣) − min𝑣∈𝑒 𝜋−1(𝑣), i.e., the distance

between the first and the last vertex 𝑣 ∈ 𝑒 in the order 𝜋.
The total span of 𝜋 is the weighted sum of the spans for all
hyperedges 𝑒 ∈ 𝐸, or equivalently the weighted sum of the
cutset sizes for 𝜋.

Given an XCNF ℭ, we define the variable hypergraph
(ℭ, 𝑏∨, 𝑏⊕, 𝑏⋆) ≔ ⟨𝑋,ℭ∗, 𝑤⟩ where vertices are variables
and hyperedges ℭ∗ =

{

𝖵𝖺𝗋𝗌(𝐶) ∣ 𝐶 ∈ ℭ
} correspond to

clauses disregarding the polarities of literals. The hyperedge
weights are given by

𝑤(𝑒) ≔
∑

𝐶 ∈ℭ∨
𝖵𝖺𝗋𝗌(𝐶) = 𝑒

𝑏∨ +
∑

𝐶 ∈ℭ⊕
𝖵𝖺𝗋𝗌(𝐶) = 𝑒

𝑏⊕ +
∑

𝐶 ∈ℭ⋆
𝖵𝖺𝗋𝗌(𝐶) = 𝑒

𝑏⋆,

where 𝑏∨, 𝑏⊕, and 𝑏⋆ are called the base weights of the
clause kinds. The clause hypergraph of ℭ is the hypergraph
(ℭ) ≔ ⟨ℭ,  , 𝑤̄⟩ where each clause constitutes a vertex
and each hyperedge contains the clauses with a common
variable. Formally, let 𝑥 ≔ {𝐶 ∈ ℭ ∣ 𝑥 ∈ 𝐶 or ¬𝑥 ∈ 𝐶}
be the set of clauses mentioning variable 𝑥 ∈ 𝑋. Then
 ≔ {𝑥 ∣ 𝑥 ∈ 𝑋} and the hyperedge weights 𝑤̄(𝑥) ≔ |𝑥|.As an example, the variable and clause hypergraph for
the CNF of the email product line are depicted in Figure 2.
Each line corresponds to a hyperedge connecting the circled
vertices, weights are elided. Assuming unit base weights,
the cutwidth of the order m c e a r on vertices of the
variable hypergraph is max{0, 4, 6, 4} = 6, the total span
is 0+1+1+2+3+2+3+2 = 14 = 0+4+6+4. For the order
m e c a r, the cutwidth is max{0, 7, 6, 4} = 7 and the total
span is 0+1+2+3+3+2+3+3 = 17 = 0+7+6+4.
Binary Decision Diagrams. Let us assume a variable order
on the set 𝑋 as a total order 𝜋 ∶ ℕ<𝑘 → 𝑋. A binary
decision diagram (BDD) is a labeled directed acyclic graph
 = ⟨𝑁, 𝜋, 𝜆, 𝗌𝗎𝖼𝖼⟩ over a finite set of inner nodes 𝑁 and
two distinct terminal nodes 0 and 1 , a variable labeling
function 𝜆∶ 𝑁 → 𝑋, and a successor function 𝗌𝗎𝖼𝖼∶ 𝑁 ×
{0, 1} → 𝑁 ∪

{ 0 , 1 }. For an inner node 𝑛 ∈ 𝑁 , the edge
from 𝑛 to 𝗌𝗎𝖼𝖼(𝑛, 1) is called then edge, and the edge from
𝑛 to 𝗌𝗎𝖼𝖼(𝑛, 0) is called else edge. We assume BDDs to be
ordered and reduced, i.e., for all inner nodes 𝑛, 𝑛′ ∈ 𝑁 and
𝑏 ∈ {0, 1}:
(ordered) 𝑛′ = 𝗌𝗎𝖼𝖼(𝑛, 𝑏) implies 𝜋

(

𝜆(𝑛)
)

< 𝜋
(

𝜆(𝑛′)
)

(reduced)
• 𝗌𝗎𝖼𝖼(𝑛, 0) ≠ 𝗌𝗎𝖼𝖼(𝑛, 1), and
• 𝜆(𝑛) = 𝜆(𝑛′) and 𝗌𝗎𝖼𝖼(𝑛, 𝑏) = 𝗌𝗎𝖼𝖼(𝑛′, 𝑏) imply 𝑛 = 𝑛′.

By |𝑛| we denote the count of descendant nodes of 𝑛.
Sometimes, we write 𝜋-BDD to denote a BDD with variable
order 𝜋. Each node 𝑛 ∈ 𝑁 ∪

{ 0 , 1 } in a BDD uniquely
represents a Boolean function J𝑛K∶ 𝖢𝗈𝗇𝖿 (𝑋) → {0, 1},
where for each 𝛾 ∈ 𝖢𝗈𝗇𝖿 (𝑋):

J𝑛K(𝛾) ≔

{

𝑏 if 𝑛 = 𝑏 , 𝑏 ∈ {0, 1}q
𝗌𝗎𝖼𝖼

(

𝑛, 𝛾(𝜆(𝑛))
)y
(𝛾) if 𝑛 ∈ 𝑁.

Figure 1c shows a BDD with an initial arrow to the node
representing JℭK of the email product line example CNF ℭ
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given in Figure 1b. As usual, then edges are depicted solid
and else edges dashed. 𝜋-BDDs are canonical, i.e., for two
𝜋-BDDs  and ′ over nodes 𝑁 and 𝑁 ′, respectively, and
nodes 𝑛 ∈ 𝑁, 𝑛′ ∈ 𝑁 ′ with J𝑛K = J𝑛′K, the subgraphs rooted
at 𝑛 and 𝑛′ are isomorphic [24]. BDDs can be enhanced with
complement edges to further reduce their size, employing the
very same node 𝑛 to represent both, a Boolean function J𝑛K
and its negation ¬J𝑛K [1]. Technically, a complement bit is
associated to each BDD edge, which indicates whether the
function represented by the target node has to be comple-
mented.

To practically use BDDs, we define notations for basic
BDD building blocks and operations. For each operator
of propositional logic, there is an algorithm applying that
operator to BDD nodes, in particular apply_and, apply_or,
apply_xor, and apply_not for the logic operators ∧,⊕, and ¬,
respectively. For a variable 𝑥 ∈ 𝑋, we denote by 𝑥 the BDD
node that has a then edge to 1 and else edge to 0 and by
¬𝑥 its negation ( 𝑥 ). Therefore, BDDs can be used as a data
structure for Boolean functions similar to propositional logic
formulas. For instance, apply_and(𝑛, 𝑛′) and 𝜙∧𝜙′ represent
the same Boolean functions if J𝑛K = 𝜙 and J𝑛′K = 𝜙′.
The apply algorithms recursively decompose the operands
at the top-most variable into their then and else branches and
compose the results into a BDD node. Uniqueness, i.e., that
no two distinct nodes represent the same Boolean function,
is ensured on-the-fly during the latter composition step [12].
Applying a binary operator to two nodes 𝑛 and 𝑛′ yields a
node with at most |𝑛| ⋅ |𝑛′| descendants. Using memoization,
the time complexity is hence bounded by (|𝑛| ⋅ |𝑛′|). The
operator ite implements a ternary if-then-else operation on
BDDs, i.e., for any 𝛾 ∈ 𝖢𝗈𝗇𝖿 (𝑋) we have Jite(𝑛, 𝑡, 𝑒)K(𝛾) =
1 iff J𝑛K(𝛾) = 1 implies J𝑡K(𝛾) = 1 and J𝑛K(𝛾) = 0 implies
J𝑒K(𝛾) = 1.

3. CNF-to-BDD Compilation Techniques
Constructing BDDs from large-scale CNFs comes with

challenging time and memory demands. Notably, not only
the final BDD representing the CNF needs to fit into mem-
ory, but also the intermediate stages during construction.
In fact, most approaches for CNF compilation suffer from
the peak-size explosion problem where intermediate BDD
sizes during construction exceed memory constraints while
the resulting (canonical) BDD could well meet those con-
straints [34, 49, 22].
Standard Compilation Technique. The classical approach
to compile a CNF ℭ∨ into a 𝜋-BDD  with root node 𝑛
where Jℭ∨K = J𝑛K is done using a bottom-up approach
that incrementally constructs the BDD by a left-deep ex-
ecution of operands in the CNF [34, 23, 28, 16, 22, 31].
Algorithm 1 shows the pseudocode of this technique, which
we extended for XCNF. Here, BDD nodes are first con-
structed for each clause (Lines 1–14), followed by BDDs for
clauses successively being conjoined following the clause
order 𝜌 (Line 16). Note that the apply operations for clause
construction (Lines 1–14) only take constant time when

Algorithm 1: Left-deep XCNF-to-BDD compilation
input : XCNF ℭ = ℭ∨ ∪ ℭ⊕ ∪ ℭ⋆ = {𝐶𝑖 ∣ 𝑖 ∈ ℕ<𝑚},

variable order 𝜋 ∶ ℕ<𝑘 → 𝑋, and clause order
𝜌∶ ℕ<𝑚 → ℕ<𝑚

output: root node 𝑛 in a 𝜋-BDD with J𝑛K = JℭK

1 for 𝑖 ≔ 0 to 𝑚 − 1 do
2 𝑛𝑖 ≔ 0
3 if 𝐶𝑖 ∈ ℭ∨ then
4 for 𝑗 ≔ 0 to 𝑚𝑖 − 1 do
5 𝑛𝑖 ≔ apply_or(𝑛𝑖, 𝓁𝑖,𝑗 )
6 else if 𝐶𝑖 ∈ ℭ⊕ then
7 for 𝑗 ≔ 0 to 𝑚𝑖 − 1 do
8 𝑛𝑖 ≔ apply_xor(𝑛𝑖, 𝓁𝑖,𝑗 )
9 else if 𝐶𝑖 ∈ ℭ⋆ then

10 𝑡 ≔ 1 ; 𝑒 ≔ 0
11 for 𝑗 ≔ 0 to 𝑚𝑖 − 2 do
12 𝑒 ≔ ite( 𝓁𝑖,𝑗 , 𝑡, 𝑒)

13 𝑡 ≔ apply_and(𝑡, ∼𝓁𝑖,𝑗 )

14 𝑛𝑖 ≔ ite( 𝓁𝑖,𝑚𝑖−1 , 𝑡, 𝑒)

15 𝑛 ≔ 1
16 for 𝑖 ≔ 0 to 𝑚 − 1 do 𝑛 ≔ apply_and(𝑛, 𝑛𝜌(𝑖))
17 return 𝑛

literals are sorted descending according to 𝜋. The tool
LOGIC2BDD [23] implements Algorithm 1 sequentially,
while the construction integrated in OXIDD [31] also allows
for concurrent apply and ite operators.
Advanced Techniques. There are many techniques pre-
sented in the literature to influence the performance of BDD
construction. Most techniques alter the variable order 𝜋,
since this has great impact on the size of the constructed
BDD [11, 50]. Finding good variable orders involves to
solve an NP-complete problem [11], such that static variable-
ordering heuristics [50, 3, 4] or dynamic reordering [52] are
the methods of choice. The clause order 𝜌 is also known to
impact construction speed and intermediate peak sizes [4,
48, 22]. Besides preprocessing the input CNF and orderings,
also the compilation itself can be configured. Here, different
construction schemes [48] or BDD engines for compila-
tion [23, 25, 31] can be considered.

In this section, we describe various techniques to tune
CNF-to-BDD compilation, focusing on existing approaches
presented in the literature but also discussing new techniques
in terms of CNF preprocessing and possible parallelization
of the construction.
3.1. Preprocessing

Preprocessing the input CNF towards a CNF that exhibits
more structure is well-established in the context of SAT
solving, but has been barely considered for BDD compi-
lation. We here focus on well-known techniques of CNF
preprocessing and factorization.
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3.1.1. CNF Preprocessing
CNF preprocessors from the literature transform a given

CNF formula into another one to increase the performance
for SAT or #SAT solvers [41, 40]. Most importantly in this
context, these techniques only preserve satisfiability or the
model count of the CNF, but not necessarily equivalence. In
the context of CNF-to-BDD compilation, the goal is to yield
a BDD representation of the very same Boolean function
as encoded by the given CNF. Thus, we limit ourselves
to well-known equivalence-preserving preprocessing tech-
niques. The most basic such technique is unit propagation
(UP, also Boolean constraint propagation, BCP [17]): For
every unit clause {𝓁}, it removes all other clauses contain-
ing 𝓁, since these are satisfied iff {𝓁} is. Additionally, UP
removes ∼𝓁 from all clauses. UP can be implemented with
linear worst-case time complexity.

The #SAT preprocessor PMC [41] implements three
more advanced equivalence-preserving preprocessing tech-
niques: backbone identification, occurrence reduction, and
vivification. The backbone of a CNF ℭ is the set of literals
that are true in every model, i.e., literals 𝓁 with 𝛾(𝓁) = 1
for all 𝛾 ∈ 𝖢𝗈𝗇𝖿 (𝑋) where JℭK(𝛾) = 1. Each literal in
the backbone can be added as a unit clause, and subsequent
UP can reduce the CNF. Backbone identification is as hard
as SAT, but structured approaches have shown to perform
well in practice [45, 43]. Occurrence reduction is a simple
technique that replaces clauses by some subsuming other
clauses [41]. Using UP, vivification removes clauses and
literals whose subclauses and negated literals are entailed
by other clauses [47]. Occurrence reduction and vivifica-
tion have a worst-case time complexity cubic in the CNF
size [41]. In the following, we refer to “PMC” as the con-
figuration that applies those three techniques.
3.1.2. ONE-HOT and XOR Factorization

While admitting a small BDD representation, some log-
ical connectives such as ONE-HOT or XOR do not have a
comparably small encoding in CNF. Any ONE-HOT clause
⋆(𝓁0,… ,𝓁𝑛−1) over 𝑛 literals 𝓁𝑖 with different variables is
equivalent to one disjunctive clause {𝓁𝑖 ∣ 𝑖 ∈ ℕ<𝑛} and
𝑛(𝑛−1)∕2 disjunctive clauses {∼𝓁𝑖,∼𝓁𝑗} with 𝑖, 𝑗 ∈ ℕ<𝑛 and
𝑖 ≠ 𝑗. For instance, ⋆(𝑥, 𝑦, 𝑧) is equivalent to

(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (¬𝑥 ∨ ¬𝑦) ∧ (¬𝑥 ∨ ¬𝑧) ∧ (¬𝑦 ∨ ¬𝑧).

A (non-empty) XOR clause ⊕(𝓁0,… ,𝓁𝑛−1) generally re-
quires even 2𝑛−1 disjunctive clauses 𝐿 ∪ {∼𝓁 ∣ 𝓁 ∈ 𝐿′},
where 𝐿,𝐿′ ⊆ {𝓁𝑖 ∣ 𝑖 ∈ ℕ<𝑛}, 𝐿∩𝐿′ = ∅, and |𝐿′

| is even.
For instance, ⊕(𝑥, 𝑦, 𝑧) is equivalent to
(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ 𝑧).

At the same time, ONE-HOT and XOR clauses of size 𝑛 can
be represented using BDDs with only 2𝑛 − 1 inner nodes.
Hence, BDD compilation can greatly benefit from directly
compiling ONE-HOT and XOR clauses (see Algorithm 1)
instead of compiling their disjunctive clause counterparts.
However, most (feature) models are given as plain CNFs,
not admitting direct access to ONE-HOT and XOR clauses.

Algorithm 2: ONE-HOT factorization
input : set of disjunctive clauses ℭ∨
output: set of ONE-HOT clauses ℭ⋆,

set of subsumed disjunctive clauses ⋆
time : 

(
∑

𝐶∈ℭ∨
|𝐶|2

)

1 ℭ⋆ ≔ ∅; ⋆ ≔ ∅
2 foreach 𝐶 ∈ ℭ∨ with |𝐶| ⩾ 3 do
3 if

{

{∼𝓁,∼𝓁′} ∣ 𝓁,𝓁′ ∈ 𝐶,𝓁 ≠ 𝓁′
}

⊆ ℭ∨ then
4 ℭ⋆ ≔ ℭ⋆ ∪ {𝐶}
5 ⋆ ≔ ⋆ ∪

{

{∼𝓁,∼𝓁′} ∣ 𝓁,𝓁′ ∈ 𝐶,𝓁 ≠ 𝓁′
}

6 return ℭ⋆,⋆

Under the assumption that the given CNF resulted from
the above standard transformations applied on ONE-HOT
or XOR groups, techniques to recover such groups showed
great success in the context of SAT and #SAT solvers [29,
57]. This motivates to investigate CNF-to-BDD compilation
where ONE-HOT and XOR clauses are recovered and fac-
tored out into an XCNF, which is subsequently compiled
into a BDD using Algorithm 1. Throughout this section, we
assume an input CNF ℭ∨ that is simplified, i.e., there are
no clauses with both positive and negative occurrences of
the same variable, and unit propagation has been applied
exhaustively. The latter avoids a special case during ONE-
HOT recovery, namely to look for unit clauses subsuming a
required two-literal clause.
ONE-HOT Recovery. Algorithm 2 can detect ONE-HOT
groups with at least three literals in disjunctive clauses ℭ∨,
returning ONE-HOT clauses ℭ⋆ with their subsumed set of
original disjunctive clauses ⋆. This leads to the factorized
XCNF ℭ = ⟨ℭ∨⧵⋆,∅,ℭ⋆⟩ where Jℭ∨K = JℭK and which
thus can be used for BDD compilation. Note that if we
made the algorithm recover two-literal ONE-HOT clauses
by lowering the bound in Line 2, it would add both {𝓁,𝓁′}
and {∼𝓁,∼𝓁′} to ℭ⋆. We cover this case in the subsequent
XOR recovery. Algorithm 2 has a running time linear in the
number of clauses and quadratic in the clause size.
XOR Recovery. Heule [29] presented a simple algorithm for
XOR recovery by sorting the disjunctive clauses for efficient
processing. First, each clause is sorted by its variables,
followed by sorting the clause set (1) lexicographically by
their variables and (2) by the parity of the negated literal
count. This ensures that the disjunctive clauses forming an
XOR clause are next to each other. The final XOR recovery
is then just a linear scan over the clauses.

However, it is quite common that for an XOR group of
size 𝑛, some of the corresponding 2𝑛−1 disjunctive clauses
of size 𝑛 are not present in the clause set, but instead smaller
clauses subsuming them [57]. Algorithm 3 is more costly
than the simple algorithm but also recovers the XOR clause
in such a case. Its worst-case running time is quadratic in
the number of clauses and exponential in the clause size.
Therefore, large clauses incur high computational costs. At
the same time, it is rather unlikely to actually recover a large
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Algorithm 3: XOR factorization
input : set of disjunctive clauses ℭ∨
output: set of XOR clauses ℭ⊕,

set of subsumed disjunctive clauses ⊕
time : 

(

|ℭ∨|
∑

𝐶∈ℭ∨
2|𝐶|

)

1 ℭ⊕ ≔ ∅; ⊕ ≔ ∅;  ≔ ∅
2 foreach 𝐶 ∈ ℭ∨ with |𝐶| ⩾ 2 do
3  ≔  ∪ {𝐶} // “done” clauses

4  ≔ {𝐶} // “found” clauses of length |𝐶|
5 foreach 𝐶 ′ ∈ ℭ∨⧵ with 𝖵𝖺𝗋𝗌(𝐶 ′) ⊆ 𝖵𝖺𝗋𝗌(𝐶) do
6 𝑉 ≔ 𝖵𝖺𝗋𝗌(𝐶⧵𝐶 ′)
7 foreach 𝑃 ⊆ 𝑉 do // expand 𝐶 ′ to length |𝐶|
8 𝐶 ′′ ≔ 𝐶 ′ ∪ 𝑃 ∪ {¬𝑥 ∣ 𝑥 ∈ 𝑉 ⧵𝑃 }
9 if |{𝓁 ∈ 𝐶 ′′ ∣ ∼𝓁 ∈ 𝐶}| is even then

10  ≔  ∪ {𝐶 ′′}
11 if | | = 2|𝐶|−1 then
12 ℭ⊕ ≔ ℭ⊕ ∪ {𝐶}
13 ⊕ ≔ ⊕ ∪ ( ∩ ℭ∨)
14 return ℭ⊕,⊕

XOR. Thus, one usually imposes an upper bound on the
literal count of a potential XOR clause in practice.
Combined Recovery. When using XOR factorization in iso-
lation, one would consider the XCNF ℭ = ⟨ℭ∨⧵⊕,ℭ⊕,∅⟩

as input of Algorithm 1 for BDD construction. When com-
bining ONE-HOT and XOR factorization, ONE-HOT re-
covery is applied first. Assuming that ℭ∨ does not contain
redundant clauses, XOR recovery will not find an XOR
clause ⊕(𝓁0,… ,𝓁𝑛−1) in ℭ∨ if ONE-HOT recovery iden-
tifies ⋆(𝓁0,… ,𝓁𝑛−1) in ℭ∨, since the ONE-HOT clause
subsumes the XOR clause. So we use ℭ∨⧵ℭ⋆ as input of
XOR factorization, since the clauses in ⋆ may still be
necessary to recover some XORs. For BDD construction, the
XCNF ℭ = ⟨ℭ∨⧵(⋆∪ ⊕),ℭ⊕,ℭ⋆⟩ is then used as input
for Algorithm 1.
3.2. Ordering Heuristics

The size of a BDD crucially depends on its variable
order [13, 11], and many heuristics have been presented in
the literature to establish good variable orders for BDDs
compiled from circuits or CNFs [50]. Dually, construction
performance and the peak size of a BDD depend on the order
of gates processed in circuits and the clause order in CNFs,
respectively (see Algorithm 1). Most heuristics follow the
well-known principle that good orders place dependent vari-
ables and clauses close to each other. These dependencies are
captured in the variable or clause hypergraph, respectively. A
good quality measure on the close placement of dependent
variables is then provided by the total span of an order on
hypergraph vertices, i.e., the accumulated maximal distances
of directly connected vertices in the order.
3.2.1. Theoretical Considerations

Variable Ordering. The intuition behind minimizing the
total span for good variable orders can be explained as
follows: the lower the total span, the closer the variables that

have common clauses are placed in the order. Between such
close variables, information about a variable decision has
to be carried over to fewer other variable decisions before
ultimately deciding whether a clause is satisfied or not. The
textbook example for extremal cases of this phenomenon is
the CNF

𝜑𝑚 = (𝑥0 ∨ 𝑦0) ∧ (𝑥1 ∨ 𝑦1) ∧ … ∧ (𝑥𝑚 ∨ 𝑦𝑚)

that has a variable hypergraph with 𝑚 + 1 isolated pairs
of variables, each connected by one edge. Choosing the
variable order

[𝑥0,… , 𝑥𝑚, 𝑦0,… , 𝑦𝑚]

yields a BDD with 2𝑚+2 nodes, while the interleaved vari-
able order

[𝑥0, 𝑦0,… , 𝑥𝑚, 𝑦𝑚]

yields a BDD with only 2⋅(𝑚+2) nodes. The latter order puts
variables in a common clause next to each other, minimizing
the total span. The role of the variable order can be captured
by an upper bound on the BDD size:
Theorem 1. Let ℭ be an XCNF over a set of variables 𝑋,
 = (ℭ, 1, 1, 1) = ⟨ℭ,  , 𝑤⟩ its variable hypergraph with
unit base weights, and 𝜋 ∶ ℕ<𝑘 → 𝑋 a variable order. Then

3 +
𝑘−2
∑

𝑖=0
2𝑤

(

𝖢𝗎𝗍𝗌𝖾𝗍 (𝑋𝜋
𝑖 )
)

is an upper bound for the node count of the 𝜋-BDD for ℭ.

Recall that 𝑋𝜋
𝑖 =

{

𝜋(𝑗) ∣ 𝑗 ∈ ℕ<𝑖+1
}. A similar

upper bound has been devised by Huang and Darwiche for
CNFs and relying on the cutwidth, i.e., the maximum cutset
size [30]. Our theorem provides a generalization from CNF
to XCNF and typically yields a tighter bound by taking the
individual cutset sizes into account.
Proof. Each node 𝑛 in a 𝜋-BDD corresponds to one or mul-
tiple partial configurations 𝛿∶ 𝑋 ⇀ {0, 1} whose domains
are the set of variables that occur in 𝜋 before 𝑛’s associated
variable 𝜆(𝑛). In general, there are 2𝑖 partial configurations 𝛿
with 𝖣𝗈𝗆(𝛿) =

{

𝜋(𝑗) ∣ 𝑗 ∈ ℕ<𝑖
}. However, JℭK|𝛿 may be

the same Boolean function for some of such 𝛿 and therefore
be represented by the same BDD node. We now use cutsets
to establish an upper bound on the number of different
functions JℭK|𝛿 , which immediately translates to an upper
bound on the BDD node count.

If 𝖣𝗈𝗆(𝛿) = 𝑋 for a (partial) configuration 𝛿, then JℭK|𝛿is either 𝟎 or 𝟏. Considering the partial configuration 𝛿∅with 𝖣𝗈𝗆(𝛿∅) = ∅, the function JℭK|𝛿∅ is just JℭK. These
functions correspond to the 3 in the upper bound sum.
Considering 𝑖 ∈ ℕ⩽𝑘−2, it hence suffices to show that

|

|

|

{

JℭK|𝛿 ∣ 𝖣𝗈𝗆(𝛿) = 𝑋𝜋
𝑖
}

⧵ {𝟎}||
|

≤ 2𝑤
(

𝖢𝗎𝗍𝗌𝖾𝗍 (𝑋𝜋
𝑖 )
)

.

To this end, we consider each clause 𝐶 ∈ ℭ separately
and will show that unless J𝐶K◦|𝛿 = 𝟎, it may be (1) either
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of two functions if 𝐶 ∈ 𝖢𝗎𝗍𝗌𝖾𝗍(𝑋𝜋
𝑖 ), or (2) just a single

function if 𝐶 ∉ 𝖢𝗎𝗍𝗌𝖾𝗍(𝑋𝜋
𝑖 ). Here, ◦ denotes the operator

associated with 𝐶 , i.e., ⋆ if 𝐶 ∈ ℭ⋆, else ⊕ if 𝐶 ∈ ℭ⊕, and
otherwise ∨.3 In case J𝐶K◦|𝛿 = 𝟎, we have JℭK|𝛿 = 𝟎, which
is already covered in the sum. From this it directly follows
that at most two additional functions have to be represented
for each clause in the 𝑖-th cutset. Thus, at most

3 +
𝑘−2
∑

𝑖=0
2𝑤

(

𝖢𝗎𝗍𝗌𝖾𝗍 (𝑋𝜋
𝑖 )
)

distinct functions are represented in a BDD, providing an
upper bound on the number of nodes in the BDD for ℭ.

We now prove the remaining claims (1) and (2). Let 𝛿
be any partial configuration with 𝖣𝗈𝗆(𝛿) = 𝑋𝜋

𝑖 . The clause
operators ∨ and ⊕ enjoy the property that under 𝛿, the
subset 𝑋𝜋

𝑖 ∩ 𝐶 of clause literals can be replaced by the
Boolean constant J𝑋𝜋

𝑖 ∩𝐶K◦(𝛿) ∈ {0, 1} while retaining the
semantics. The same replacement can also be done for the
operator ⋆, unless ∑𝓁∈𝑋𝜋

𝑖 ∩𝐶
𝛿(𝓁) > 1 and thus J𝐶K◦|𝛿 = 𝟎.

Then for case (1), J𝐶K◦|𝛿 can only be one of two possibly
non-𝟎 Boolean functions, the one replacing 𝑋𝜋

𝑖 ∩ 𝐶 by 0
and the one replacing 𝑋𝜋

𝑖 ∩ 𝐶 by 1. Considering case (2),
𝐶 either does not contain any instantiated variables, i.e.,
𝑋𝜋
𝑖 ∩ 𝐶 = ∅, then J𝐶K◦|𝛿 = J𝐶K◦. Or all variables in 𝐶 are

instantiated, i.e., 𝐶 ⊆ 𝑋𝜋
𝑖 , in which case J𝐶K◦|𝛿 ∈ {𝟎, 𝟏}.

This shows the claims (1) and (2) and thus the upper bound
of the theorem.

Clause Ordering. Next to variable ordering, the order of
clauses towards a left-deep BDD compilation (see Algo-
rithm 1) has shown great impact on the intermediate BDD
sizes and hence construction performance [4, 48]. Intu-
itively, reducing the total span between clauses that share
common variables fosters the exploitation of BDD reduc-
tions and yields fewer changes of variable dependencies
during BDD construction. An extremal illustrative example
is the CNF formula 𝑧 ∧ 𝜑𝑚 ∧ ¬𝑧 with the linear clause
order 𝜌. While the BDD representing this CNF is 0 , a left-
deep BDD compilation according to Algorithm 1 constructs
the potentially exponential BDD for 𝜑𝑚. Minimizing the
total span and thus bringing clauses 𝑧 and ¬𝑧 close together
enables to reach to 0 earlier, preferably at the beginning of
the construction.
3.2.2. Hypergraph-based Heuristics

Most successful static ordering heuristics for CNFs de-
pend on analyzing their variable or clause hypergraph. Re-
call that in such hypergraphs  = ⟨𝑉,𝐸,𝑤⟩, vertices 𝑉 rep-
resent either variables or clauses, and hyperedges 𝐸 model
the dependencies between variables or clauses, respectively.
FORCE [3] and MINCE [4] are such heuristics reducing the
total span.

3A clause 𝐶 ∈ ℭ may in principle be contained in multiple of ℭ∨,
ℭ⊕, and ℭ⋆. Still, the associated operator of 𝐶 is a single one: recall that a
ONE-HOT clause 𝐶 subsumes the XOR clause 𝐶 , which in turn subsumes
the disjunctive clause 𝐶 . Any subsumed clauses can be removed from ℭ
without changing the semantics JℭK.

Algorithm 4: ReMINCE(, 𝜀)
input : hypergraph  = ⟨𝑉,𝐸⟩, imbalance 𝜀 ∈ (0, 1∕2)
output: total order 𝑜∶ ℕ<|𝑉 |

→ 𝑉

1 Procedure BiRec(𝐿,𝑀)
input : 𝐿,𝑀 ⊆ 𝑉
output: total order 𝜏 ∶ ℕ<|𝑀|

→𝑀
2 if 𝑀 = {𝑥} then return {0 ↦ 𝑥}
3 𝐵 ≔ 𝜀-BalancedMincut(𝐿,𝑀)
4 return BiRec(𝐿,𝐵) ++ BiRec(𝐿 ∪ 𝐵,𝑀⧵𝐵)
5 return BiRec(∅, 𝑉 )

FORCE. Initialized with a random order, FORCE iteratively
updates a current order 𝜋 ∶ ℕ<|𝑉 |

→ 𝑉 towards a new or-
der 𝜋′. For this, the center of gravity 𝖼𝗈𝗀(𝑒) ≔

∑

𝑣∈𝑒 𝜋
−1(𝑣)∕|𝑒|

is computed for each edge 𝑒 ∈ 𝐸. Then, the tentative
position 𝑝(𝑣) for a vertex 𝑣 in the updated order 𝜋′ is given
by the weighted average

𝑝(𝑣) ≔
∑

𝑒∈𝐸𝑣 𝑤(𝑒) ⋅ 𝖼𝗈𝗀(𝑒)
∑

𝑒∈𝐸𝑣 𝑤(𝑒)

where 𝐸𝑣 ≔ {𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒} denotes the set of hyperedges
containing 𝑣. The new order 𝜋′ is chosen such that it agrees
with 𝑝, i.e., 𝑝(𝑥) ⩽ 𝑝(𝑦) for any two vertices 𝑥, 𝑦 ∈ 𝑉
with 𝜋′(𝑥) ⩽ 𝜋′(𝑦). Additionally, if 𝑝(𝑥) = 𝑝(𝑦), then we
require that 𝜋′ agrees with 𝜋, formally 𝜋(𝑥) ⩽ 𝜋(𝑦). This
is implemented via a simple sorting procedure. Setting the
updated order to the current one, FORCE iterates until it
either stabilizes, a quality metric such as the total span stops
decreasing, a high number of iterations has been performed,
or a predefined time limit has been reached [3]. We opt
for iteration until stabilization and select the order with the
lowest total span found along the way.
MINCE. The main idea for MINCE is to recursively de-
termine 𝜀-balanced mincuts until reaching singleton cuts.
Due to the (nearly) minimal cutting, dependent nodes are
likely to not be separated by the first cuts and are thus
placed close to each other, reducing the overall total span.
While FORCE can easily be implemented following the
pseudocode of its original publication [3], MINCE has not
been fully specified. Notably, MINCE is only available as
binary executable that includes the circuit placer CAPO used
to compute approximate balanced mincuts with predefined
parameters [15]. To investigate the impact of state-of-the-
art cutting algorithms and parameters on the performance
of MINCE, we implemented ReMINCE following the pseu-
docode provided in Algorithm 4. Our reimplementation can
take advantage of state-of-the-art hypergraph cutting tools
such as KAHYPAR [53] and vary parameters such as the
imbalance factor 𝜀 and hypergraph weights.

Note that hypergraph cutters typically do not directly
incorporate the concept of a left-context as used in our defi-
nition of balanced mincuts. However, they allow specifying
vertex weights and fixing vertices to partitions. Contracting
the left-context 𝐿 and the right-context 𝑅 = 𝑉 ⧵ (𝑀 ∪ 𝐿)
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𝐴 𝐵u

v

Figure 4: Example of a hypergraph where mincuts with
unbounded imbalance yield a suboptimal order.

each into one pseudo-vertex with weight 0 and fixing them to
a left- and right-partition, respectively, emulates our setting
towards balanced mincuts.
Imbalance Factors in MINCE. Recall that the mincut
imbalance factor 𝜀 gives an upper bound on the size of the
larger partition. As an example, an 𝜀 close to 1∕2 restricts the
larger partition to contain at most 3∕4 of the nodes, while an
𝜀 close to 0 requires the two partitions to be equally large
(modulo rounding). When allowing a larger imbalance, the
costs of a single cut can potentially be reduced. However,
this does not necessarily translate to a better variable or
clause order. To keep the upper bound from Theorem 1
on the BDD size low, the primary goal is to minimize the
maximal cutset size. There is no value in making a cheaper
cut at the beginning if that implies a more expensive cut
later on. After all, every vertex is placed in its own partition
at the end of the recursive bipartitioning procedure. As an
example, consider the hypergraph illustrated in Figure 4,
consisting of two vertex clusters 𝐴 and 𝐵 that itself are
densely connected. Additionally, there are two vertices 𝑢 and
𝑣, where 𝑢 is connected to 𝑣 as well as two vertices in 𝐴
and two vertices in 𝐵 via separate hyperedges each. Apart
from that, 𝑣 is not connected to any other vertex, and there is
also no hyperedge connecting vertices of 𝐴 and 𝐵. Clearly,
𝑢 and 𝑣 should appear somewhere in the middle of the order.
Without a bound on the imbalance, however, the first mincut
will split 𝑣 apart, causing it to be placed at one of the order’s
ends and making subsequent mincuts more expensive.
Comparing FORCE and MINCE. FORCE is the de facto
standard for ordering variables due to its simple implemen-
tation and good performance [3, 28, 48]. In the original
implementation of FORCE and MINCE, the former was
faster in determining an order than the latter. However,
experiments showed that on larger compilation instances,
MINCE usually leads to smaller BDD sizes and faster BDD
construction than FORCE [3]. That FORCE admits a more
fundamental drawback can be illustrated already with small
examples like in Figure 5. Here, the hypergraph consists of
two vertex clusters 𝑎 to 𝑑 and 𝑑 to 𝑓 , both sharing the node 𝑑.
Depending on the initial order, the FORCE algorithm may
eventually encounter a vertex order where the two clusters
are interleaved as depicted in Figure 5b. In this order, the
vertices are sorted by their tentative positions, meaning that
FORCE terminates here. However, the returned order is only
a local optimum regarding the total span and the cutwidth.
In contrast to FORCE, MINCE minimizes cuts in the hyper-
graph and hence directly separates the two clusters. Thereby,
it avoids the costly interleaving and yields a globally optimal

0 1 2 3 4 5

a

b

c

d

e

f

total span: 11
cutwidth: 3

(a) An optimal order

0 1 2 3 4 5

a

b c

d

e f

1.66

2.33

2.25

2.86

3.00

3.33

total span: 21
cutwidth: 5

(b) Suboptimal order, which FORCE fails to improve. Tentative
positions computed by FORCE are next to each vertex in teal.

Figure 5: Example hypergraph where MINCE yields an optimal
order, but FORCE may get stuck with a suboptimal order.
Vertices are labeled by letters a to f. Vertex positions are
numbered from left to right. Dots on hyperedges indicate their
center of gravity. Vertical placement of nodes has no meaning.

order with almost half the total span and cutwidth. Note that
such constellations generalize well to larger hypergraphs:
averaging towards tentative positions in FORCE does not
directly take cutsets into account and can thus place densely-
connected vertices far from each other.
3.3. Compilation Process

The previous sections concerned preprocessing of the
input for the BDD construction following Algorithm 1.
In this section, we discuss techniques for the compilation
process itself, compiling an input XCNF into a BDD using
different BDD engines and construction schemes.
3.3.1. Clause Bracketing

As conjunction is an associative operation, there are dif-
ferent ways to bracket clauses in an XCNF without changing
its semantics. The exact bracketing is reflected in the abstract
syntax tree of the XCNF, whose structure is crucial for
the BDD construction [48, 61]. We consider two different
bracketing schemes: left-deep and balanced. A left-deep
bracketing groups left-most clauses, e.g.,

(

(𝐶0 ∧ 𝐶1) ∧ 𝐶2
)

∧ 𝐶3,

and is used in the standard construction as given in Algo-
rithm 1 [4, 23, 28, 16, 22]. During such a construction, the
BDD of the left operand is likely to grow fast during the
construction, while the right operand covers only one clause
and is thus comparably small. Therefore, many conjunctive
operations are expected to operate on large BDDs [16].
Hence, methods to balance the size of conjoined clauses and
hence BDD sizes were developed [48, 61, 16], interpreting
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CNF-to-BDD compilation

preprocessing ordering construction

PMC ONE-HOT XOR heuristic variables clauses

FORCE MINCE ReMINCE

engine scheme

OxiDD Logic2BDD

DVO

left-deep balanced work-stealing

parallel

inner outerAND OR ONE-HOT Optional Implies Mutually
exclusive

Figure 6: Feature diagram for CNF-to-BDD compilation configurations.

the ordered clauses as an approximately balanced tree. Fol-
lowing the above example, a balanced bracketing would be

(𝐶0 ∧ 𝐶1) ∧ (𝐶2 ∧ 𝐶3).

Such a bracketing can be achieved by performing recursive
bracketing, each splitting the XCNF into two parts of similar
size.
3.3.2. Parallelization

To speed up BDD construction on multicore proces-
sors, one option is to parallelize the conjunction operations
during incremental bottom-up construction using work-
stealing [10]. Here, the recursive calls for the then and
else branches in apply_and are executed concurrently. In
the context of BDDs, this idea has been pioneered by
SYLVAN [20], with OXIDD [31] supporting this form of
operation-internal parallelization as well.

Besides this form of inner parallelism, also multiple
conjunction operations in independent parts of the con-
struction tree could be executed concurrently. We call this
form of concurrent execution outer parallelism. Instead of
fixing a clause bracketing in advance, we can also allow free
reassociation of conjunction operations at runtime, while
maintaining the clause order (see section above). Intuitively,
the latter approach assumes intermediate BDD construction
times to increase when their sizes do. Eagerly conjoining in-
termediate BDDs right after their computation might hence
also reduce the aforementioned size drift during left-deep
construction. Outer and inner parallelization approaches can
be freely combined.
3.3.3. BDD Engine

The performance of CNF-to-BDD compilation also de-
pends on the chosen BDD library that maintains the data
structure and performs the basic apply operations [25]. State-
of-the-art libraries are, e.g., BUDDY [42], CUDD [56],
SYLVAN [20], and OXIDD [31]. The latter two also sup-
port parallelization of apply operations. Dedicated CNF-
to-BDD compilers implementing incremental construction

usually rely on CUDD. In the context of compiling fea-
ture models, LOGIC2BDD [23] uses CUDD as backend
and modifies its dynamic variable reordering (DVO) [52]
for a dedicated treatment of feature variable groups. With
this enhancement, LOGIC2BDD enabled the compilation
of large feature models [28, 58]. OXIDD has shown to be
en par or even outperform other BDD libraries and ships
with a command-line interface OXIDD-CLI. The latter sup-
ports CNF-to-BDD compilation where different construc-
tion schemes and OXIDD options can be configured [31]. We
consider LOGIC2BDD and OXIDD without any advanced
construction techniques as the basic settings, i.e., without
DVO and parallel construction, respectively. The respective
advanced construction mechanisms can then be enabled on
demand.

4. Feature Model Compilation
In this section, we empirically evaluate the impact

of CNF-to-BDD compilation techniques when applied on
CNFs for feature models. Here, we focus on the techniques
summarized in the last section. Our experiments and evalu-
ation are driven by the following research questions:
(RQ1) How is CNF-to-BDD compilation performance for

feature models affected by different
a) preprocessing techniques,
b) variable or clause ordering,
c) processing engines and schemes, and
d) parallelization?

(RQ2) How does optimizing construction techniques im-
pact BDD compilation on large-scale feature models?

The first research question mainly focuses on the exploration
of BDD compilation techniques from the literature. The
second then asks for the utilization of insights about such
techniques to potentially obtain BDDs for feature models
that the literature considered too complex to compile.
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4.1. Configuring CNF-to-BDD Compilation
Given the manifold different techniques and tunable pa-

rameters for CNF-to-BDD compilation, we model the com-
pilation itself as a configurable system. This leads to a feature
model for CNF-to-BDD compilation as given by the feature
diagram in Figure 6. Here, we take on a simplified view
on configurations, modelling only those that are relevant
for our experiments. In particular, we neglect the possibil-
ities to not apply any variable ordering, or to use different
heuristics for variable and clause ordering. Deviating from
our experiment setup, the feature model permits enabling
OXIDD’s inner and outer parallelism independently. This
distinction is solely for explanatory purposes. For the eval-
uation, we either enable none or all possible parallelism
options. Note that the feature diagram contains three cross-
tree constraints: LOGIC2BDD (2) only supports a left-deep
construction scheme (l) while OXIDD’s outer parallelism
is incompatible with this scheme, leading to l and outer
parallelism mutually excluding each other. Work-stealing (w)
on the other hand requires outer parallelism. Overall, this
leads to 23 ⋅ (3 ⋅ 2) ⋅ (2 ⋅ (1+2+1) + 2) = 480 different
possibilities to configure CNF-to-BDD compilation.

We denote configurations as triples of preprocessing, or-
dering, and construction options. For instance, “px-mc-opb”
refers to the following configuration: The initial CNF is pre-
processed using PMC (p) and XOR factorization (x). Then,
MINCE (m) is used as the ordering heuristic to generate a
variable as well as a clause order (c). Finally, OXIDD (o)
performs a parallelized (p) construction of the feature model
using a balanced (b) construction scheme. When no prepro-
cessing is applied, we denote this as ∅, e.g., “∅-f-2l” refers
to a left-deep (l) construction using LOGIC2BDD (2) with
FORCE (f) variable ordering, but without clause ordering
and without any preprocessing. Note that p and o are used in
both the preprocessing and construction components. Their
meaning will be clear from the context or their placement in
the configuration triple.
Implementation. We implemented the techniques for the
CNF-to-BDD compilation configurations in a tool called
DIMAGIC 2.0 [33] written in Rust. The different CNF-to-
BDD compilation configurations can be enabled individu-
ally via command line flags. Our tool takes DIMACS files
as input, the standard file format for CNF formulas obtained
from feature models using FEATUREIDE [60]. The output
is an extended DIMACS file format that supports XCNF
with ONE-HOT and XOR groups. Variable and clause or-
ders are encoded as supported by FEATUREIDE [60], i.e.,
variable names in comments and the order determined by
the sequence of lines listing variables and clauses. PMC and
MINCE are called as external binaries [41, 2]. ONE-HOT
and XOR factorization, as well as FORCE and ReMINCE
are implemented in the tool itself, the latter employing the
state-of-the-art hypergraph cutting library KAHYPAR [53].
The hypergraph cutters in MINCE and ReMINCE use prob-
abilistic algorithms and incorporate a seedable random num-
ber generator, while FORCE is deterministic given an initial
order of hypergraph nodes.

CNF
XCNF

DIMACS CNF Seed

Simplification (unit propagation)

Randomize variable & clause order

PMC

ONE-HOT factorization

XOR factorization

FORCE
variable ordering

MINCE
variable ordering

ReMINCE
variable ordering

FORCE
clause ordering

MINCE
clause ordering

ReMINCE
clause ordering

XCNF

Format conversion Format conversion

Logic2BDD oxidd-cli

DDDMP

dimagic-bench-gen

Figure 7: Experiment pipeline.

4.2. Experiment Setup
Experiment Pipeline. While dimagic is intended as reusable
preprocessing tool, dimagic-bench-gen provides a frontend
specifically targeted at generating XCNFs for a set of con-
figurations. Its pipeline is shown in Figure 7. Note that we
always perform an initial unit propagation pass to enable a
fairer comparison among the other more costly preprocess-
ing techniques. Unit propagation also has a very good cost-
utility ratio, being very efficient and simplifying the CNF
structure. Reductions by more than an order of magnitude in
the number of clauses are well possible (see Table 3). Our
pipeline involves probabilistic algorithms, e.g., ReMINCE
or FORCE. To achieve a certain degree of robustness in
our evaluation, we run the experiment pipeline for five
fixed random seeds each and typically report the median for
compilation times. In this vein, we call a model median-
constructible if the compilation succeeded for at least three
out of five seeds.

For BDD compilation, we use OXIDD-CLI 0.3.04 and
LOGIC2BDD.5 The underlying libraries CUDD and OXIDD
are configured to use complement edges in BDDs. We
patched LOGIC2BDD to support ONE-HOT groups with
negative literals as well. Still, LOGIC2BDD does not support

4https://github.com/oxidd/oxidd
5https://github.com/davidfa71/Extending-Logic, as of commit 63ce01c
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dedicated construction of XOR groups. We export the
resulting BDDs in DDDMP format, the standard file format
to store BDDs originally introduced in CUDD [56]. To test
correctness of our compilations, we compute model counts
with OXIDD-CLI using arbitrary-precision integers, which
we cross-check with model counts obtained from the #SAT
solver SHARPSAT-TD [40].6
Experiment System. All experiments were conducted on an
AMD Ryzen 9 5950X with 16 physical cores and 128 GiB
RAM running Ubuntu 24.04 (Linux kernel 6.8). We set
a timeout of 10 minutes and impose a memory limit of
roughly 4 GiB in OXIDD by restricting the node count to
140,928,616 and the apply cache to 33,554,432 entries.
LOGIC2BDD does not expose fitting memory settings.
Hence, we do not evaluate memory consumptions. To ensure
that multiple experiments on different cores do not interfere
with respect to memory constraints, we enforce a memory
limit of 7 GiB for each instance via Linux control groups.
We perform the #SAT computations on BDDs generated
from DDDMP files in a separate step because of memory
requirements, given that the arbitrary precision integers
stored for every BDD node can easily demand a multiple
of the BDD size.

4.3. Impact Analysis (RQ1)
In our configuration space of CNF-to-BDD configu-

rations, we already reduced the amount of CNF-to-BDD
configurations, e.g., by disallowing mixtures of different
ordering heuristics (see Section 4.1). However, there are still
too many configurations to analyze them all at once. We
hence perform a stepwise impact analysis of each of the
four categories of RQ1, also taking insights from previous
simplified experiments into account [21].

For answering RQ1, we conduct experiments using the
benchmarks of the UNWISE feature model sampler [26]
as target models. This benchmark set comprises 49 repre-
sentative state-of-the-art feature models that cover a broad
spectrum of different models and sizes. Specifically, we
conduct the following experiments:
(E1) Towards answering RQ1a we first determine the im-

pact of preprocessing onto BDD construction time and
size. Here, we stepwise add preprocessing techniques
to the configuration rc-ob7—see Section 4.3.1.

(E2) On the best preprocessing configuration obtained from
Experiment E1, we investigate the impact of mincut
parameters 𝜀 and hypergraph weights onto ReMINCE,
comparing them with the classic MINCE implemen-
tation, contributing to RQ1b—see Section 4.3.2.

(E3) Relying on the best configurations obtained from Ex-
periments E1 and E2, we compare the performance of

6Within 10 minutes, computing the SAT count succeeded for all models
but linux-2.6.33.3, for which we could not compile a BDD either [59].

7We choose OXIDD in favor of LOGIC2BDD as baseline engine, since
the latter supports ONE-HOT but not XOR group construction.

different engines, construction schemes, and FORCE
and ReMINCE orderings. This experiment targets
RQ1a-c—see Section 4.3.3.

(E4) Based on the best-performing configuration of the
previous experiments, we vary construction schemes
and analyze the impact of multi-threaded construction
and apply operations in OXIDD, targeting RQ1c-d—
see Section 4.3.4.

4.3.1. Preprocessing (E1)
To assess the impact of preprocessing onto compilation

performance, we investigate the configurations *-rc-ob, i.e.,
sequential balanced compilation using OXIDD with Re-
MINCE variable and clause ordering. We chose 16 as an
upper bound of the XOR recovery clause size to achieve
a reasonable trade-off between recovery success rate and
time. Additionally, we set a timeout of 5 min, which was
only reached for embtoolkit-smarch without PMC. Notably,
while XOR factorization has shown great benefits for SAT
solving [57], this barely is the case for BDD compilation of
feature models. With PMC enabled, all recovered XORs are
subsumed by ONE-HOTs in our experiments. In particular,
the configurations pox and po are effectively the same. Hence,
we ignore pox in the sequel.

Table 1 shows how many of the 49 UNWISE models
could be compiled for the different preprocessing configu-
rations with at most two failures for five random seeds. It
appears that PMC in combination with ONE-HOT factor-
ization (po) performs best. Figure 8 details how the median
compilation times change when disabling either PMC or
ONE-HOT factorization, or replacing ONE-HOT by XOR
factorization. The general impression is that larger models
(with compilation times of at least one second) benefit
from PMC and ONE-HOT factorization. Especially the im-
provements of PMC are remarkable, with nine additional
constructible models and six larger models that could be
compiled much faster with speedups ranging from 2.5 to
146. Only two models take considerably longer to compile
with PMC preprocessing: financialServices01 and fiasco.
The improvements of ONE-HOT factorization are more
moderate, still enabling the compilation of two additional
models.

PMC and ONE-HOT factorization are also very benefi-
cial with respect to the time needed to compute variable and
clause order. This is due to vast reductions in the number of
clauses (cf. Table 3), and simplifications in the XCNF struc-
ture. Without any preprocessing, ReMINCE takes up to 296 s
to compute a variable order for the automotive2_4 model.
This is the longest computation time among models we have
been able to compile. Clause orders tend to be even more
costly to compute, the longest observed computation time is
2,516 s, again for automotive2_4. In contrast, PMC prepro-
cessing only takes 46 s for automotive2_4, and less than 4 s
for every other constructible model. ONE-HOT factorization
is generally very fast with less than 0.3 s regardless of
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Figure 8: Impact analysis of preprocessing techniques on UnWise models. Timings are the median over five runs with different
random seeds. Dotted lines indicate a factor 2 or 1∕2, respectively, compared to the baseline.

Table 1
Median-constructible UnWise models by preprocessing.

Preprocessing ∅ x o ox p px po pox

Constructible Models 34 33 35 34 42 42 44 44

whether PMC is enabled or not.8 With both PMC and ONE-
HOT factorization enabled, the longest observed variable
ordering time is 51 s for automotive2_4 (again, only taking
constructible models into account). The longest ReMINCE
clause ordering time is 38 s for constructible models, with
financialServices01 taking longest. The overall preprocess-
ing time (including variable and clause ordering) is lower in
the po-rc configuration compared to ∅-rc for all UNWISE
models, with a speedup ranging from 1.1 to 48.3 (geometric
mean: 2.7). The longest overall preprocessing time is 108 s
for constructible models (automotive2_4). All ECOS models
could be preprocessed within 21 s each. Given how many
models could be compiled with po-rc preprocessing only,
these costs pay off easily.

Answering RQ1a, we find that CNF-to-BDD compila-
tion performance greatly benefits from PMC preprocess-
ing and ONE-HOT factorization, while XOR factoriza-
tion is negligible for feature models.

4.3.2. MINCE vs. ReMINCE (E2)
The main drawback of the original MINCE implementa-

tion [4] is occasional failure to generate orders [21], but also
its mere availability as a binary with consequently less con-
figurability and unclear algorithmic aspects. This motivates
a reimplementation of MINCE. Following Algorithm 4, we

8This even includes the five models we have not been able to compile.
XOR factorization is even faster with less than 0.06 s provided that PMC
is enabled. With PMC disabled, XOR factorization takes up to 1.1 s for
constructible UNWISE models, but may take more than 300 s for the
remaining ones.

integrated our reimplementation ReMINCE in DIMAGIC 2.0.
In this experiment, we compare the performance of MINCE
with several configurations of ReMINCE based on a bal-
anced OXIDD construction with best preprocessing. That is,
we focus on configurations po-mc-ob and po-rc-ob.

We consider three versions of the variable hypergraph
(ℭ, 𝑏∨, 𝑏⊕, 𝑏⋆) with different base weights each:

(a) 𝑏∨= 1, 𝑏⊕= 1, 𝑏⋆= 1

(b) 𝑏∨= 1, 𝑏⊕= 2, 𝑏⋆= 2

(c) 𝑏∨= 1, 𝑏⊕= |ℭ|, 𝑏⋆= |ℭ|

Note that we use equal base weights for ONE-HOT and
XOR clauses, since po preprocessing only produces XOR
clauses of size 2, i.e., they can also be viewed as ONE-HOT
clauses. Option (c) strictly prioritizes ONE-HOT clauses,
ensuring that the span for such clauses is as low as possible,
potentially at the cost of higher spans for disjunctive clauses.
This is hence in the spirit of the recently presented FORCExgheuristic [27]. Option (a) with unit base weights is motivated
by the upper bound on the BDD node count from Theorem 1.
The slightly biased option (b) is based on the motivation for
option (a), but incorporates the observation that an XOR or
ONE-HOT clause over 𝑘 variables has 𝑘−1 additional BDD
nodes compared to a disjunctive clause.

As a further configuration option of ReMINCE, we
consider three imbalance factors 𝜀 ∈ {0.01, 0.1, 0.4999}.
Unlike the clause weights, which only apply to the variable
hypergraph, the imbalance factor is relevant for both cutting
the variable and the clause hypergraph. In principle, there
is no need to choose the same 𝜀 for computing variable
and clause orders, but we do not consider that additional
dimension in our evaluation.
Experiment Results. First of all, we remark that PMC and
ONE-HOT factorization successfully mitigate the runtime
errors of the original MINCE, apparent without any prepro-
cessing [21]. Thus, a fair comparison between MINCE and
ReMINCE is possible on preprocessed models. An initial
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Figure 9: MINCE and other ReMINCE configurations compared to the best ReMINCE configuration (on the x-axis) for UnWise
models. The first row shows construction times as medians over five runs with different random seeds, the second row the medians
of the resulting BDDs’ node counts. Base weights are denoted as triples 𝑏∨/𝑏⊕/𝑏⋆. Data points for the five non-constructible
models are excluded.

Table 2
Performance of MINCE and various ReMINCE configurations
on the UnWise suite. Medians are taken across runs with five
different seeds. For the compilation times, each model with
three or more compilation failures counts as 600 s.

Compilation Failures

Median Total
∑

Median Times (s)

Heuristic 𝜀 (a) (b) (c) (a) (b) (c) (a) (b) (c)

MINCE 5 34 3,444
ReMINCE 0.01 16 17 18 77 74 88 9,741 10,301 11,347
ReMINCE 0.1 6 5 6 38 29 38 3,993 3,403 4,521
ReMINCE 0.4999 5 5 9 33 36 53 3,485 3,468 6,404

observation is that ReMINCE performs worst with the small-
est imbalance 𝜀 = 0.01, with more than 30 % compilation
failures (cf. Table 2). Further, strictly prioritizing ONE-HOT
and XOR clauses as done with the 𝑤̂ weights tends to be
worse than giving them roughly equal weight as disjunctive
clauses. This aligns with the theoretical upper bound on
BDD sizes from Theorem 1, which is agnostic of the clause

weights. So while ONE-HOT clauses deserve special care in
XCNF preprocessing (cf. Section 4.3.1), their role is not as
special with respect to variable ordering.

The number of compilation failures shown in Table 2
suggests that ReMINCE with 𝜀 = 0.1 and clause weights 𝑤̄,
i.e., weight 2 for ONE-HOT and XOR clauses, gives the best
results. Out of the 245 compilations in total (49 models times
5 runs with different seeds), only 29 timed out or ran out
of memory. Given that five models could not be compiled
in any configuration and for any seed, this means that the
compilation is quite robust, with four failures distributed
across the remaining 44 ⋅ 5 compilations. When taking the
median across the five seeds, i.e., considering a model as
failed iff three or more out of five compilation failed, we
observe that only the five most challenging models cannot
be compiled. The latter also holds true for three other con-
figurations: (1) MINCE, (2) ReMINCE with 𝜀 = 0.4999 and
uni-weights (𝑤) as well as (3) ReMINCE with 𝜀 = 0.4999
and weight 2 for ONE-HOTs and XORs (𝑤̄).

A detailed comparison between these configurations and
the best one as a baseline is shown in Figure 9. Most models
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(a) OxiDD left-deep (ol)
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(b) Logic2BDD without dynamic reordering (2l)
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(c) OxiDD balanced (ob)
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(d) Logic2BDD with dynamic variable reordering (2dl)

Figure 10: Impact analysis of single-threaded configurations. Timings are the median over five runs with different random seeds.
The number of successfully constructed instances after 600 s are on the right of each plot.

have roughly the same construction time for all four config-
urations, but there is a considerable amount of outliers for
larger models, where the baseline performs better. The best
configuration mainly struggles with the financialServices01

model (the point at the top right of each plot in the first row).
As a further quality metric for the variable order, we consider
the final BDD node count (cf. the second row of Figure 9),
but remark that the results are inconclusive.

Table 2 also presents cumulative median compilation
times, where each failed model is penalized with 600 s, i.e.,
the timeout duration. By taking the sum across models, we
intentionally give more weight to the larger models. Here
again, ReMINCE with 𝜀 = 0.1 and weight 2 performs best.

Regarding RQ1b, we find that ReMINCE is competitive
with MINCE. The best ReMINCE configuration uses
slightly biased clause weights and a moderate imbalance
factor. It is more robust than MINCE in terms of compi-
lation failures.

4.3.3. Engines, Orderings, and Construction (E3)
To more broadly evaluate the impact of configuration

options on BDD compilation performance, we used FORCE
variable ordering as a baseline (f) and compare with Re-
MINCE variable ordering (r). Both were combined with
clause ordering using the very same ordering heuristic, i.e.,
fc and rc, and the preceding preprocessing configuration po

following the best-performing configuration determined in

Section 4.3.1. This leads to eight base configurations: ∅-f,
po-f, ∅-fc, po-fc, ∅-r, po-r, ∅-rc, and po-rc. For each of
these base configurations we consider four different engine
options: ol, ob, 2l, and 2dl.

Figure 10 shows for each of the four engine config-
urations a plot on how many of the 49 models could be
constructed up to a given time of 10 minutes with the eight
different base configurations. For the timings, we chose the
median over five compilations with different random seeds.
Thus, Figure 10 contains data points for configurations with
at most two compilation failures. Preprocessing times are
not included, since we would need to tune the options of the
preprocessing tools—especially the hypergraph cutter used
in ReMINCE—to thoroughly assess the trade-off between
preprocessing and construction times. However, we remark
that the preprocessing times are reasonably low for the best-
performing configuration po-rc (cf. Section 4.3.1).

Figures 10a and 10b correspond to the basic settings of
the BDD engines, where both OXIDD and LOGIC2BDD are
used to perform a left-deep single-threaded construction.
OXIDD has slight advantages here due to its superior
performance compared to CUDD, the backend BDD library
of LOGIC2BDD [31]. Figure 10c and Figure 10d show
optimizations unique to OXIDD and LOGIC2BDD, i.e.,
balanced construction and component-wise dynamic vari-
able reordering [52], respectively. The balanced construc-
tion scheme greatly improves performance for the better-
performing configurations, with up to 13 additional models
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Table 3
OxiDD balanced (ob) construction times in seconds for the models of the UnWise benchmark suite (t: timeout [> 600 s],
m: memout [> 4GiB], t/m: at least once each timeout and memout). All eCos models contained in the UnWise suite are
marked with “*”. For many models, the clause count after PMC (p) varies depending on the seed. Here, 𝑎+𝑏 denotes the interval
[𝑎, 𝑎 + 𝑏].

Name
Input After UP po ∅-f po-f ∅-fc po-fc ∅-r po-r ∅-rc po-rc

#vars #clauses #clauses #clauses #OH max min max min max min max min max min max min max min max min

x264 16 11 11 5 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dune 17 16 16 8 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
berkeleydbc 18 29 20 4 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lrzip 20 63 49 8 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hipacc 31 104 104 68 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
javagc 39 105 67 13 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
polly 40 100 63 18 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vp9 42 104 63 17 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7z 44 210 167 9 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
jhipster 45 104 82 54 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
berkeleydb 76 141 140 92+1 13 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
axtls_2_1_4 94 190 190 96+8 27+1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
axtls-kconfig 96 203 89 66 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
fiasco_17_10 234 1,178 1,141 626+27 37+5 t 37.90 3.94 1.05 t 0.26 1.55 0.05 t 69.45 18.03 6.75 0.93 0.14 0.34 0.03
uclibc-ng_1_0_29 269 1,403 1,403 578+7 33+1 5.41 0.33 1.13 0.08 0.08 0.03 0.03 0.01 1.29 1.00 1.20 0.30 0.04 0.01 0.02 0.01
uclibc 313 1,285 933 221 24 0.03 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.01 0.00 0.00 0.00
toybox_0_7_5 316 108 93 87 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
uclinux-base 380 7,366 3,562 148 33 420.43 284.82 0.00 0.00 14.01 5.03 0.00 0.00 t/m 386.38 0.00 0.00 0.02 0.01 0.00 0.00
toybox 544 1,020 840 519+11 63+5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
axtls-smarch 684 2,155 2,041 744+32 90+10 7.37 0.12 0.01 0.00 0.04 0.02 0.00 0.00 13.08 3.19 0.00 0.00 0.01 0.00 0.00 0.00
financialServices01 771 7,241 7,141 4,254+50 63+7 t/m t/m t/m t/m m m m m t/m t/m t/m t/m 18.51 2.86 t/m 3.53
busybox-1.18.0-kconfig 854 1,322 659 560 31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
busybox_1_28_0 998 962 962 784 28 t/m 5.50 t/m 19.04 m 0.87 t/m 4.45 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00
am31_sim* 1,178 2,845 2,258 1,419+51 518+17 t t t t t t t 11.79 t/m 68.31 t/m 14.25 m 22.44 120.07 3.73
embtoolkit-kconfig 1,179 5,967 4,435 1,182+16 97+6 t/m t/m t/m 34.80 m 2.12 t/m 11.58 9.25 6.77 0.01 0.01 0.02 0.01 0.00 0.00
ref4955* 1,218 3,099 2,385 1,518+7 534+3 t t t t t/m t/m t t t/m t/m t 115.38 t/m t/m 22.32 4.10
ecos-icse11 1,244 3,146 2,445 1,546+9 565+3 t t t t t t t/m t/m t/m t/m t 44.24 m 38.98 15.89 2.50
pati* 1,248 3,266 2,491 1,542+11 555+4 t t t t t/m t/m t/m t/m t/m 87.42 t 39.05 t/m 16.63 24.25 2.14
p2106* 1,262 3,102 2,424 1,523+42 560+13 t t t t t/m t/m t 17.22 t t t 36.45 m 393.41 10.85 5.11
integrator_arm9* 1,267 50,606 3,024 1,599+12 550+5 t t t/m t/m t t t 53.74 t t t 263.43 t/m 29.86 32.75 6.69
olpce2294* 1,274 3,881 2,525 1,587+10 572+4 t t t t t t t/m t/m t t t 84.96 t/m 585.58 m 7.13
adderii* 1,276 3,206 2,522 1,581+12 591+5 t t t t t t t/m 33.22 t/m t/m t t t/m 16.56 m 10.69
at91sam7sek* 1,296 3,921 2,530 1,600+12 571+5 t t t t t/m t/m t 45.75 t 127.96 t 17.60 63.58 25.59 15.24 3.96
se77x9* 1,319 49,937 3,027 1,639+7 577+3 t t t t t/m t/m t/m t/m t t t 52.07 m 25.78 60.59 4.96
m5272c3* 1,323 3,297 2,598 1,636+11 627+4 t t t t t/m t/m t/m 56.59 t t t 98.02 t/m t/m 39.66 6.07
phycore229x* 1,360 4,026 2,622 1,677+10 578+4 t t t t t/m t/m t 73.57 t/m 578.17 t 20.27 m 22.76 97.27 2.58
freebsd-icse11 1,396 62,183 14,094 1,563+1 7 t t t t t t t t t/m t/m t/m t/m t/m t/m t t
ea2468* 1,408 3,470 2,649 1,680+38 612+10 t t t t t/m t/m t/m 53.57 t/m t/m t 45.46 t/m 61.07 26.37 2.36
uclinux-distribution 1,580 2,131 1,389 1,146+3 49+1 t/m t/m t/m t/m m m m m 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00
fiasco 1,638 5,228 3,899 2,052+50 137+21 t t t 22.63 t/m t/m t/m 15.01 t/m t/m t/m 32.71 0.38 0.14 17.14 0.69
uclinux 1,850 2,468 1,850 1,547 303 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
automotive01 2,513 10,275 9,845 4,398+27 430+12 t/m t/m t t t/m t/m t/m 3.95 t 23.24 24.26 3.14 1.07 0.18 0.83 0.25
linux-2.6.33.3 6,467 132,032 91,686 8,290+28 359+7 m m t/m t/m m m t/m t/m m m t/m t/m t/m t/m t/m t/m
busybox-1.18.0-smarch 6,796 17,836 16,044 7,143+183 969+71 t/m t/m t/m t/m t/m t/m t/m t/m t t 0.06 0.04 0.33 0.10 0.04 0.02
uclinux-config 11,254 31,637 29,955 11,761+324 2,156+109 t/m t/m m m t/m t/m m m t t 0.16 0.07 m 1.14 0.06 0.04
buildroot 14,910 45,603 44,006 18,062+147 4,290+70 t/m t/m t/m t/m t/m t/m m m t/m t/m t/m t/m m m t/m t/m
automotive2_4 18,616 350,221 333,424 6,108+18 1,483+9 m m t t m m t/m t/m m m 0.70 0.29 t/m 8.10 0.22 0.14
embtoolkit-smarch 23,516 180,511 157,717 30,380+1,818 7,316+176 m m t/m t/m m m m m m m m m t/m t/m t/m t/m
freetz 31,012 102,705 99,356 35,143+2,607 7,113+880 m m t/m t/m m m m m m m m m m m t/m t/m

constructed (po-rc). LOGIC2BDD’s dynamic reordering en-
hances all base configurations except po-r, with a remarkable
benefit for ∅-f. Still, it remains the worst-performing base
configuration. The performance decline for po-r is possibly
due to the inherent costs of dynamic reordering in terms
of compilation time, which do not necessarily pay off in a
substantial BDD node count reduction. Another aspect could
be that the sifting-based reordering algorithm is limited to a
local view on the problem. While static ordering heuristics
look at the entire XCNF, sifting can only take the clauses
into account that have been compiled into the BDD so far,
and thus may counter the good initial variable order [22].
Compared to previous experiments without ONE-HOT fac-
torization [21], however, we barely observe these effects,

so apparently ONE-HOT factorization mostly mitigates the
potentially negative impact of dynamic variable reordering.

Throughout all configurations and engines, the same
16 models always finished within two seconds, which we
label as easy. For these models, the individual influences of
the configuration options were mixed, and negligible given
the short construction times. For the remaining non-easy
models, a clear impact of the configurations is visible: the
highest number of models can be constructed for the com-
bined configuration po-rc, and gradually less when dropping
either of the configurations or switching from ReMINCE to
FORCE (see Figure 10).

Table 3 shows detailed timings for OXIDD with a
balanced construction scheme, showing for each model
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Figure 11: Parallelization speedups for UnWise models with
po-rc preprocessing and construction using OxiDD. There is
one point per run, i.e., no aggregation over the five seeds.

the best (min) and worst (max) construction time across
the five random seeds. While showing mixed influences
of the configuration options, also here the use of PMC
preprocessing and ONE-HOT factorization in combination
with ReMINCE variable and clause ordering shows the
best performance (po-rc-ob). The best-performing runs with
configuration po-rc-ob enabled to construct 44 out of the 49
models of the benchmark set in each at most 11 seconds.

Towards answering RQ1a-c, we find that a balanced
OXIDD construction with ReMINCE variable- and
clause-ordering and PMC preprocessing with ONE-
HOT factorization performs best. It clearly outperforms
LOGIC2BDD, the current state-of-the-art, which only
performs well on small feature models.

4.3.4. Parallelization and Construction Schemes (E4)
The huge improvement of a balanced construction (ob)

over the left-deep scheme (ol) deserves a closer look. To
this end, we focus on the best preprocessing configuration,
i.e., po-rc. Besides balanced and left-deep, OXIDD offers

the work-stealing scheme, which requires parallelization. To
compare all three schemes, we first investigate the impact of
parallelization.

Figure 11 shows considerable speedups for models
whose single-threaded construction takes at least 0.001 s.
The speedups for the balanced scheme tend to be a bit
higher, which could be due to the concurrent execution of
multiple apply_and operations. But even for larger models,
the speedup barely reaches a factor 4 for four threads, so the
scalability of parallelization appears to be limited.

As an exemplary model, we consider at91sam7sek from
the UNWISE test suite. In single-threaded execution, left-
deep constructions takes 72.8 s, while for the balanced tree,
we only need 5.7 s. When switching to multi-threaded con-
struction using 4 worker threads, we observed running times
of 39.2 s (left-deep) and 3.7 s (balanced). Allowing to reas-
sociate operations (work-stealing) is not beneficial compared
to the balanced tree, the construction time is 4.0 s here.

To investigate the reason for these large differences, we
plot the descendant count |𝑛| for the result node 𝑛 of each
conjunction operation in Figure 12c (left). Note that the
final count of processed conjunctions is less than the clause
count because OXIDD-CLI has special handling for unit
clauses. For the left-deep tree, there are considerably more
large conjuncts, as can be seen in the histogram (Figure 12c,
right). The graph shape for the balanced tree follows our
expectations: in the first half of processed conjunctions, we
only combine clauses from the input, of which all consist
of at most five literals. In the worst case, the result of
apply_and(𝑛1, 𝑛2) has at most |𝑛1| ⋅ |𝑛2| descendant nodes.
Therefore, the first half of conjuncts is guaranteed to be small
again. Results keep growing while moving up in the tree. The
pattern for work-stealing is similar.

The pattern of conjunct sizes for the at91sam7sek model
is quite typical. Together with the other five patterns shown
in Figure 12 it is representative for the UNWISE suite with
po-rc preprocessing. We remark that cases as in Figure 12d
are rare, where intermediate results grow much larger than
the final BDD size indicated by the red line. Apparently,
even in left-deep constructions, the po-rc preprocessing
configuration typically mitigates the well-known peak-size
explosion problem [49]. This could be mainly due to effec-
tive clause ordering, which is shown to benefit from other
preprocessing techniques [22].

Regarding RQ1c, we observe that the balanced and
work-stealing schemes yield smaller intermediate BDDs,
avoiding the peak-size explosion problem and greatly
improving both construction time and memory usage.
With respect to RQ1d, we find that parallelization may
be beneficial, but its impact is more moderate.

4.4. Large-scale Models (RQ2)
The experiments on the UNWISE benchmark set in Ta-

ble 3 already showed promising results for large models
from the ECOS feature model collection [8]. In the literature,
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Figure 12: Construction scheme examples for BDD sizes after performing conjunctions.

these models were considered too complex for BDD compi-
lation [28]. While the authors of UNWISE randomly selected
12 out of the 116 ECOS models for their benchmark set, we
now consider the whole collection. For this, we generated the
116 CNF input models from feature models given as feature
diagrams [38] using FEATUREIDE v3.11.1 [60]. Following
the results of Section 4.3, we executed each experiment
five times with the configuration po-rc that showed the
best performance in our previous experiments. Contribut-
ing to RQ1a, we also compare po-rc to the configuration
p-rc to study the impact of ONE-HOT factorization on

large-scale models. Figure 13 shows the number of models
successfully constructed in at least one run for different
BDD engines and construction schemes. In the experiments,
OXIDD with parallel balanced or work-stealing construc-
tion (opb/opw) clearly outperforms all other approaches. With
ONE-HOT factorization enabled, these two configurations
allow to construct all ECOS models in less than 13.7 s or
14.3 s each, respectively. We hence could construct all ECOS
models in a total time of 426 s, i.e., around 7 minutes. Only
about two thirds of the models can be constructed using
OXIDD left-deep (opl). LOGIC2BDD performs best without
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(b) without ONE-HOT factorization (p-rc)

Solved Instances
with factorization (po-rc) without factorization (p-rc)

Configuration # max time (s) # max time (s)

OxiDD balanced (opb) 116 13.7 116 134.2
OxiDD work-stealing (opw) 116 14.3 115 39.0
OxiDD left-deep (opl) 77 598.5 55 599.9
Logic2BDD no reordering (2l) 24 589.0 19 572.0
Logic2BDD reordering (2dl) 10 579.0 17 600.0

Figure 13: Solved instances of the large models (eCos) with and without ONE-HOT factorization. Timings are for the last
successfully compiled model of the minimum over five runs with random seeds, i.e., disregarding timeouts [>600 s].

dynamic variable reordering (2l), which can be explained
by this optimization changing a potentially good initial vari-
able order gained through ReMINCE to a worse one [22]
(see Section 4.3.3). But even with the best configuration of
LOGIC2BDD, only 20 % of the models could be compiled
within 10 minutes.

We observe that OXIDD and LOGIC2BDD configura-
tions without reordering can greatly benefit from ONE-HOT
factorization. However, for left-deep constructions, some
models with short compilation times (less than 2 minutes
for OXIDD and less than 5 minutes for LOGIC2BDD)
are slowed down. Interestingly, ONE-HOT factorization
is also not beneficial for LOGIC2BDD with reordering
enabled, most likely due to specific techniques implemented
in LOGIC2BDD that change the variable order for ONE-
HOT groups. This also shows that for large-scale feature
models, a good initial variable order obtained by suitable
static variable-ordering heuristics is more important than
dynamic reordering techniques, which are in turn mostly
effective for small feature models (also see Figure 10d).

Regarding RQ2, we conclude that optimizing BDD com-
pilation configurations drastically improves scalability
and can enable the construction of large-scale feature
models such as all ECOS feature models.

While our techniques enabled the construction of a well-
known collection of large-scale feature models, we did not

yet succeed to scale construction to the most complex mod-
els from the UNWISE test suite (see Table 3).9

4.5. Threats to Validity
Internal Validity. Computing variable and clause orders
with MINCE, ReMINCE, and FORCE showed fluctuating
performance, due to the probabilistic nature of hypergraph
cutting in MINCE and ReMINCE and the dependence on
the initial order for FORCE. To estimate and mitigate this
impact, we ran each experiment five times with five differ-
ent random seeds to shuffle the initial variable and clause
order. More runs would, however, only further improve the
performance, and the differences in the configurations were
mostly clear in all five executions. We hence consider this
threat low. Statistical tests would strengthen evidence but
require even more experiments. The aim of the paper was to
compare the large configuration space of CNF-to-BDD com-
pilation, not statistical considerations on single techniques.
The conversion of feature models to CNF could also influ-
ence our results, where we followed the standard approach of
generating DIMACS files via FEATUREIDE [60] from XML
feature models. We implemented several sanity checks to
ensure that applied model transformations preserve semantic
equivalence, e.g., by comparing model counts (#SAT).

9The models linux-2.6.33.3, freebsd-icse11, buildroot, freetz, and
embtoolkit-smarch could not be constructed in any of the test runs.
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External Validity. Our benchmarks may not be represen-
tative for all kinds of feature models. However, we relied
on state-of-the-art and established test suites covering a
wide range of applications, including the recent selection
of feature models for the sampler UNWISE [26] and the
standard ECOS benchmarks [8, 38], where validity has been
confirmed already in previous publications. Further, other
BDD compilation and CNF preprocessing techniques from
the literature threat validity. Here, our focus was not to
provide an exhaustive comparison of existing techniques,
but conduct a first comparison of techniques in CNF-to-
BDD compilation and SAT preprocessing. Also, different
BDD tools other than OXIDD and LOGIC2BDD could be
included for a comparison. However, our goal was not to
compare BDD libraries but the effectiveness of techniques
for feature model compilation. Towards a comparison of
BDD libraries and CNF-to-BDD compilation in domains
other than feature-oriented modeling, we refer to [32].

5. Conclusion
To the best of our knowledge, we were the first who

conducted a structured impact analysis of CNF-to-BDD
compilation techniques for feature models. Our analysis in-
cluded PMC preprocessing, ONE-HOT and XOR factoriza-
tion, various variable- and clause-ordering heuristics, as well
as different construction schemes and parallelization. We
showed that configuring BDD compilation greatly improves
performance or even enables construction of large-scale fea-
ture models. The latter we witnessed by all 116 ECOS models
together being constructible in around 7 minutes, where
existing approaches without optimizing BDD compilation
configurations could not succeed even in any single one.
To summarize, our findings include:

• CNF-to-BDD compilation of feature models performs
best when done with PMC preprocessing and ONE-
HOT factorization, ReMINCE variable and clause
ordering, as well as multi-threaded balanced construc-
tion using OXIDD.

• Balanced construction schemes greatly benefit from
PMC preprocessing, ONE-HOT factorization, and
ReMINCE clause ordering.

• Dynamic variable reordering is only beneficial for
smaller feature models but worsens performance for
larger ones.

Acknowledgments
The authors would like to thank the anonymous review-

ers for their comments that helped to improve the qual-
ity of the manuscript. This work was partially supported
by the DFG under the projects TRR 248 (see https://

perspicuous-computing.science, project ID 389792660) and

EXC 2050/1 (CeTI, project ID 390696704, as part of Ger-
many’s Excellence Strategy) and by the NWO through Veni
grant VI.Veni.222.431.

References
[1] Akers, S.B., 1978. Binary decision diagrams. IEEE Transactions

Computers 27, 509–516. doi:10.1109/TC.1978.1675141.
[2] Aloul, F.A., 2003. Mince. URL: http://www.aloul.net/Tools/mince/.
[3] Aloul, F.A., Markov, I.L., Sakallah, K.A., 2003. FORCE: A fast and

easy-to-implement variable-ordering heuristic, in: GLSVLSI, ACM.
pp. 116–119. doi:10.1145/764808.764839.

[4] Aloul, F.A., Markov, I.L., Sakallah, K.A., 2004. MINCE: A static
global variable-ordering heuristic for SAT search and BDD manipu-
lation., in: JUCS, pp. 1562–1596. doi:10.3217/jucs-010-12-1562.

[5] Apel, S., Batory, D., Kästner, C., Saake, G., 2013. Feature-oriented
software product lines. Springer. doi:10.1007/978-3-642-37521-7.

[6] Batory, D., 2005. Feature models, grammars, and propositional
formulas, in: Obbink, H., Pohl, K. (Eds.), Software Product Lines,
Springer, Berlin, Heidelberg. pp. 7–20. doi:10.1007/11554844_3.

[7] Benavides, D., Segura, S., Ruiz-Cortés, A., 2010. Automated analysis
of feature models 20 years later: A literature review. Inf. Syst. 35,
615–636. doi:10.1016/j.is.2010.01.001.

[8] Berger, T., She, S., Lotufo, R., Wąsowski, A., Czarnecki, K., 2010.
Variability modeling in the real: a perspective from the operating
systems domain, in: ASE, ACM. pp. 73–82. doi:10.1145/1858996.
1859010.

[9] Biere, A., Heule, M., van Maaren, H., Walsh, T. (Eds.), 2021. Hand-
book of Satisfiability - Second Edition. volume 336 of Frontiers in
Artificial Intelligence and Applications. IOS Press. doi:10.3233/
FAIA336.

[10] Blumofe, R.D., Leiserson, C.E., 1999. Scheduling multithreaded
computations by work stealing, in: J. ACM, pp. 720–748. doi:10.
1145/324133.324234.

[11] Bollig, B., Wegener, I., 1996. Improving the variable ordering of
OBDDs is NP-complete. IEEE Transactions on Computers 45, 993–
1002. doi:10.1109/12.537122.

[12] Brace, K., Rudell, R., Bryant, R., 1990. Efficient implementation of
a BDD package, in: DAC, pp. 40–45. doi:10.1109/DAC.1990.114826.

[13] Bryant, R.E., 1992. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys 24, 293–318.
doi:10.1145/136035.136043.

[14] Cadoli, M., Donini, F.M., 1997. A survey on knowledge compilation.
AI Commun. 10, 137–150. URL: https://api.semanticscholar.org/
CorpusID:16746005.

[15] Caldwell, A., Kahng, A., Markov, I., 2000. Can recursive bisection
alone produce routable, placements?, in: DAC, pp. 477–482. doi:10.
1145/337292.337549.

[16] de Colnet, A., 2023. Separating Incremental and Non-Incremental
Bottom-Up Compilation, in: Mahajan, M., Slivovsky, F. (Eds.), SAT,
Schloss Dagstuhl – LZI, Dagstuhl, Germany. pp. 7:1–7:20. doi:10.
4230/LIPIcs.SAT.2023.7.

[17] Darras, S., Dequen, G., Devendeville, L., Mazure, B., Ostrowski, R.,
Saïs, L., 2005. Using Boolean constraint propagation for sub-clauses
deduction, in: van Beek, P. (Ed.), CP, Springer, Berlin, Heidelberg.
pp. 757–761. doi:10.1007/11564751_59.

[18] Darwiche, A., 2002. A compiler for deterministic, decomposable
negation normal form, in: AAAI, AAAI Press, USA. pp. 627–634.
doi:10.5555/777092.777189.

[19] Darwiche, A., Marquis, P., 2002. A knowledge compilation map.
JAIR 17, 229–264. doi:10.1613/JAIR.989.

[20] van Dijk, T., van de Pol, J., 2017. Sylvan: multi-core frame-
work for decision diagrams. STTT 19, 675–696. doi:10.1007/
s10009-016-0433-2.

[21] Dubslaff, C., Husung, N., Käfer, N., 2024. Configuring BDD compi-
lation techniques for feature models, in: Proceedings of the 28th ACM
International Systems and Software Product Line Conference, ACM,
New York, NY, USA. pp. 209–216. doi:10.1145/3646548.3676538.

C. Dubslaff, N. Husung, and N. Käfer: Preprint submitted to Elsevier Page 21 of 22

https://perspicuous-computing.science
https://perspicuous-computing.science
http://dx.doi.org/10.1109/TC.1978.1675141
http://www.aloul.net/Tools/mince/
http://dx.doi.org/10.1145/764808.764839
http://dx.doi.org/10.3217/jucs-010-12-1562
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1145/1858996.1859010
http://dx.doi.org/10.1145/1858996.1859010
http://dx.doi.org/10.3233/FAIA336
http://dx.doi.org/10.3233/FAIA336
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1109/12.537122
http://dx.doi.org/10.1109/DAC.1990.114826
http://dx.doi.org/10.1145/136035.136043
https://api.semanticscholar.org/CorpusID:16746005
https://api.semanticscholar.org/CorpusID:16746005
http://dx.doi.org/10.1145/337292.337549
http://dx.doi.org/10.1145/337292.337549
http://dx.doi.org/10.4230/LIPIcs.SAT.2023.7
http://dx.doi.org/10.4230/LIPIcs.SAT.2023.7
http://dx.doi.org/10.1007/11564751_59
http://dx.doi.org/10.5555/777092.777189
http://dx.doi.org/10.1613/JAIR.989
http://dx.doi.org/10.1007/s10009-016-0433-2
http://dx.doi.org/10.1007/s10009-016-0433-2
http://dx.doi.org/10.1145/3646548.3676538


Tailoring BDD Compilation for Feature Models

[22] Dubslaff, C., Wirtz, J., 2025. Compiling Binary Decision Dia-
grams with Interrupt-Based Downsizing. Springer Nature Switzer-
land, Cham. pp. 252–273. doi:10.1007/978-3-031-75778-5_12.

[23] Fernandez-Amoros, D., Bra, S., Aranda-Escolástico, E., Heradio, R.,
2020. Using extended logical primitives for efficient BDD building.
Mathematics 8. doi:10.3390/math8081253.

[24] Fortune, S., Hopcroft, J., Schmidt, E.M., 1978. The complexity
of equivalence and containment for free single variable program
schemes, in: Ausiello, G., Böhm, C. (Eds.), ICALP, Springer, Berlin,
Heidelberg. pp. 227–240. doi:10.1007/3-540-08860-1_17.

[25] Heß, T., Müller, T., Sundermann, C., Thüm, T., 2022. ddueruem: a
wrapper for feature-model analysis tools, in: SPLC, ACM, New York,
NY, USA. pp. 54–57. doi:10.1145/3503229.3547032.

[26] Heß, T., Schmidt, T.J., Ostheimer, L., Krieter, S., Thüm, T., 2024.
UnWise: High T-Wise Coverage from Uniform Sampling, in: VaMoS,
ACM, New York, NY, USA. pp. 37–45. doi:10.1145/3634713.3634716.

[27] Heß, T., Semmler, S.N., Sundermann, C., Torán, J., Thüm, T., 2024.
Towards deterministic compilation of binary decision diagrams from
feature models, in: SPLC, ACM, New York, NY, USA. pp. 136–147.
doi:10.1145/3646548.3672598.

[28] Heß, T., Sundermann, C., Thüm, T., 2021. On the scalability of
building binary decision diagrams for current feature models, in:
SPLC, ACM, New York, NY, USA. pp. 131–135. doi:10.1145/
3461001.3474452.

[29] Heule, M.J.H., 2008. SmArT solving: tools and techniques for
satisfiability solvers. Ph.D. thesis. Delft University of Tech-
nology, Netherlands. URL: http://resolver.tudelft.nl/uuid:

d41522e3-690a-4eb7-a352-652d39d7ac81.
[30] Huang, J., Darwiche, A., 2004. Using DPLL for efficient OBDD

construction, in: Hoos, H.H., Mitchell, D.G. (Eds.), SAT, Springer,
Berlin, Heidelberg. pp. 157–172. doi:10.1007/11527695_13.

[31] Husung, N., Dubslaff, C., Hermanns, H., Köhl, M.A., 2024. OxiDD:
A safe, concurrent, modular, and performant decision diagram frame-
work in Rust, in: TACAS, Springer. doi:10.1007/978-3-031-57256-2_
13.

[32] Husung, N., Dubslaff, C., Hermanns, H., Köhl, M.A., 2025a. OxiDD:
The next-gen decision diagram framework in Rust, in: International
Journal on Software Tools for Technology Transfer (STTT). Accepted
for publication.

[33] Husung, N., Käfer, N., Dubslaff, C., 2025b. Dimagic 2.0. doi:10.
5281/zenodo.15583680.

[34] Jain, J., Narayan, A., Coelho, C., Khatri, S.P., Sangiovanni-
Vincentelli, A., Brayton, R.K., Fujita, M., 1995. Combining Top-
down and Bottom-up approaches for ROBDD. Technical Report.
University of California at Berkeley. URL: https://digicoll.lib.

berkeley.edu/record/135872/files/ERL-95-30.pdf.
[35] Käfer, N., Apel, S., Baier, C., Dubslaff, C., Hermanns, H., 2025. When

to sample from feature diagrams?, in: VaMoS, ACM, New York, NY,
USA. pp. 11–20. doi:10.1145/3715340.3715442.

[36] Käfer, N., Husung, N., Dubslaff, C., 2024. dimagic. doi:10.5281/
zenodo.12707100.

[37] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.,
1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report. Carnegie-Mellon University, Software Engineering
Institute. URL: https://www.sei.cmu.edu/documents/1011/1990_005_

001_15872.pdf.
[38] Knüppel, A., Thüm, T., Mennicke, S., Meinicke, J., Schaefer, I., 2017.

Is there a mismatch between real-world feature models and product-
line research?, in: ESEC/FSE, ACM, New York, NY, USA. pp. 291–
302. doi:10.1145/3106237.3106252.

[39] Knuth, D.E., 2009. The Art of Computer Programming, Volume 4,
Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams.
12th ed., Addison-Wesley Professional.

[40] Korhonen, T., Järvisalo, M., 2021. Integrating Tree Decompositions
into Decision Heuristics of Propositional Model Counters, in: Michel,
L.D. (Ed.), CP, Schloss Dagstuhl – LZI, Dagstuhl, Germany. pp. 8:1–
8:11. doi:10.4230/LIPIcs.CP.2021.8.

[41] Lagniez, J.M., Marquis, P., 2014. Preprocessing for propositional
model counting, in: AAAI, AAAI Press. pp. 2688–2694. doi:10.1609/
AAAI.V28I1.9116.

[42] Lind-Nielsen, J., 2004. BuDDy: A binary decision diagram package,
version 2.4. URL: https://buddy.sourceforge.net/manual/.

[43] Marques-Silva, J., Janota, M., Lynce, I., 2010. On computing back-
bones of propositional theories, in: ECAI, IOS Press, NLD. pp. 15–20.
doi:10.3233/978-1-60750-606-5-15.

[44] Mendonca, M., Wasowski, A., Czarnecki, K., Cowan, D., 2008. Effi-
cient compilation techniques for large scale feature models, in: GPCE,
ACM, New York, NY, USA. pp. 13–22. doi:10.1145/1449913.1449918.

[45] Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky,
L., 1999. Determining computational complexity from characteristic
‘phase transitions’. Nature 400, 133–137. doi:10.1038/22055.

[46] Mrena, M., Kvassay, M., 2021. Comparison of left fold and tree fold
strategies in creation of binary decision diagrams, in: IDT, pp. 341–
352. doi:10.1109/IDT52577.2021.9497593.

[47] Piette, C., Hamadi, Y., Sais, L., 2008. Vivifying propositional
clausal formulae, in: Ghallab, M., Spyropoulos, C.D., Fakotakis, N.,
Avouris, N.M. (Eds.), ECAI, IOS Press. pp. 525–529. doi:10.3233/
978-1-58603-891-5-525.

[48] Popov, M., Balyo, T., Iser, M., Ostertag, T., 2023. Construction
of decision diagrams for product configuration, in: Horcas, J.M.,
Galindo, J.A., Comploi-Taupe, R., Fuentes, L. (Eds.), ConfWS,
CEUR-WS.org. pp. 108–117. URL: https://ceur-ws.org/Vol-3509/

paper15.pdf.
[49] Qayyum, K., Mahzoon, A., Drechsler, R., 2022. Monitoring the

effects of static variable orders on the construction of BDDs, in:
MESIICON, pp. 1–6. doi:10.1109/MESIICON55227.2022.10093493.

[50] Rice, M., Kulhari, S., 2008. A survey of static variable ordering
heuristics for efficient BDD/MDD construction. Technical Report.
University of California. URL: http://alumni.cs.ucr.edu/~skulhari/
StaticHeuristics.pdf.

[51] Roy, J.A., Markov, I.L., Bertacco, V., 2004. Restoring circuit structure
from SAT instances, in: IWLS. URL: https://www.academia.edu/

download/30670628/10.1.1.2.9660.pdf.
[52] Rudell, R., 1993. Dynamic variable ordering for ordered binary

decision diagrams, in: ICCAD, pp. 42–47. doi:10.1109/ICCAD.1993.
580029.

[53] Schlag, S., Heuer, T., Gottesbüren, L., Akhremtsev, Y., Schulz, C.,
Sanders, P., 2022. High-quality hypergraph partitioning, in: ACM J.
Exp. Algorithmics. doi:10.1145/3529090.

[54] She, S., Lotufo, R., Berger, T., Wąsowski, A., Czarnecki, K., 2010.
Variability model of the Linux kernel, in: VaMoS, Linz, Aus-
tria. URL: http://www.vamos-workshop.net/proceedings/VaMoS_2010_

Proceedings.pdf.
[55] Shmoys, D.B., 1997. Cut problems and their application to divide-

and-conquer, in: Approximation algorithms for NP-hard problems,
pp. 192–235.

[56] Somenzi, F., 2015. CUDD: CU Decision Diagram Package. Technical
Report. University of Colorado at Boulder.

[57] Soos, M., Meel, K.S., 2019. BIRD: Engineering an efficient CNF-
XOR SAT solver and its applications to approximate model counting,
in: AAAI, pp. 1592–1599. doi:10.1609/aaai.v33i01.33011592.

[58] Sundermann, C., Kuiter, E., Heß, T., Raab, H., Krieter, S., Thüm,
T., 2023. On the benefits of knowledge compilation for feature-
model analyses. Annals of Mathematics and Artificial Intelligence
doi:10.1007/s10472-023-09906-6.

[59] Thüm, T., 2020. A BDD for linux? the knowledge compilation
challenge for variability, in: SPLC, ACM, New York, NY, USA.
doi:10.1145/3382025.3414943.

[60] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich,
T., 2014. FeatureIDE: An extensible framework for feature-oriented
software development. SCP 79, 70–85. doi:10.1016/j.scico.2012.06.
002.

[61] Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T., 2023. Precise
quantitative analysis of binarized neural networks: A BDD-based
approach. TOSEM 32. doi:10.1145/3563212.

C. Dubslaff, N. Husung, and N. Käfer: Preprint submitted to Elsevier Page 22 of 22

http://dx.doi.org/10.1007/978-3-031-75778-5_12
http://dx.doi.org/10.3390/math8081253
http://dx.doi.org/10.1007/3-540-08860-1_17
http://dx.doi.org/10.1145/3503229.3547032
http://dx.doi.org/10.1145/3634713.3634716
http://dx.doi.org/10.1145/3646548.3672598
http://dx.doi.org/10.1145/3461001.3474452
http://dx.doi.org/10.1145/3461001.3474452
http://resolver.tudelft.nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81
http://resolver.tudelft.nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81
http://dx.doi.org/10.1007/11527695_13
http://dx.doi.org/10.1007/978-3-031-57256-2_13
http://dx.doi.org/10.1007/978-3-031-57256-2_13
http://dx.doi.org/10.5281/zenodo.15583680
http://dx.doi.org/10.5281/zenodo.15583680
https://digicoll.lib.berkeley.edu/record/135872/files/ERL-95-30.pdf
https://digicoll.lib.berkeley.edu/record/135872/files/ERL-95-30.pdf
http://dx.doi.org/10.1145/3715340.3715442
http://dx.doi.org/10.5281/zenodo.12707100
http://dx.doi.org/10.5281/zenodo.12707100
https://www.sei.cmu.edu/documents/1011/1990_005_001_15872.pdf
https://www.sei.cmu.edu/documents/1011/1990_005_001_15872.pdf
http://dx.doi.org/10.1145/3106237.3106252
http://dx.doi.org/10.4230/LIPIcs.CP.2021.8
http://dx.doi.org/10.1609/AAAI.V28I1.9116
http://dx.doi.org/10.1609/AAAI.V28I1.9116
https://buddy.sourceforge.net/manual/
http://dx.doi.org/10.3233/978-1-60750-606-5-15
http://dx.doi.org/10.1145/1449913.1449918
http://dx.doi.org/10.1038/22055
http://dx.doi.org/10.1109/IDT52577.2021.9497593
http://dx.doi.org/10.3233/978-1-58603-891-5-525
http://dx.doi.org/10.3233/978-1-58603-891-5-525
https://ceur-ws.org/Vol-3509/paper15.pdf
https://ceur-ws.org/Vol-3509/paper15.pdf
http://dx.doi.org/10.1109/MESIICON55227.2022.10093493
http://alumni.cs.ucr.edu/~skulhari/StaticHeuristics.pdf
http://alumni.cs.ucr.edu/~skulhari/StaticHeuristics.pdf
https://www.academia.edu/download/30670628/10.1.1.2.9660.pdf
https://www.academia.edu/download/30670628/10.1.1.2.9660.pdf
http://dx.doi.org/10.1109/ICCAD.1993.580029
http://dx.doi.org/10.1109/ICCAD.1993.580029
http://dx.doi.org/10.1145/3529090
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://dx.doi.org/10.1609/aaai.v33i01.33011592
http://dx.doi.org/10.1007/s10472-023-09906-6
http://dx.doi.org/10.1145/3382025.3414943
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://dx.doi.org/10.1145/3563212

	Introduction
	Foundations
	CNF-to-BDD Compilation Techniques
	Preprocessing
	CNF Preprocessing
	ONE-HOT and XOR Factorization

	Ordering Heuristics
	Theoretical Considerations
	Hypergraph-based Heuristics

	Compilation Process
	Clause Bracketing
	Parallelization
	BDD Engine


	Feature Model Compilation
	Configuring CNF-to-BDD Compilation
	Experiment Setup
	Impact Analysis (RQ1)
	Preprocessing (E1)
	MINCE vs. ReMINCE (E2)
	Engines, Orderings, and Construction (E3)
	Parallelization and Construction Schemes (E4)

	Large-scale Models (RQ2)
	Threats to Validity

	Conclusion

