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Abstract. Most modern systems, be it cyber-physical or mere software
systems, are highly configurable. The main challenge when dealing with
such configurable systems stems from the usually huge number of sys-
tem variants that can be exponential in the number of configuration
options or features. Monitoring systems that react on observations, e.g.,
sensor data, varying across system configurations or being themselves
configurable also face this challenge but have barely been considered in
the literature. In this paper, we discuss new aspects for runtime mon-
itoring with variability in the system being monitored as well as the
monitor itself. As a first step towards a configurable-by-construction run-
time monitoring approach, we introduce configurable monitors from an
automata-theoretic and stream-based perspective. For this, we harvest
existing work on featured transition systems and present a variability-
aware variant of the stream-based specification language Lola.

1 Introduction

Modern cyber-physical systems such as cars, airplanes, or robots are highly con-
figurable based on customer needs or through their inherent adaptivity to the
environments in which they are operating. For example, cars may come with dif-
ferent driver assistance systems the customer payed for or robots adapt their be-
haviors depending on whether they operate in a machine-only or human-machine
co-adaptive setting. Within software systems we also encounter configurability,
e.g., in software product lines that can be configured through features as in-
cremental or optional functionalities [32,2]. Often the configuration spaces are
exponential in the number of configuration options or features, which renders
the development, analysis, and explanation of such systems challenging tasks.
The manifold possibilities to configure these systems raise further challenges
also in the runtime monitoring setting that have been barely addressed in the
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existing literature. In this paper, we propose first steps towards a configurable-
by-construction runtime monitoring approach that is inspired by automata-
theoretic runtime verification [24,6], featured transition systems [11], and stream-
based runtime monitoring [12,27]. Specifically, we (a) discuss challenges towards
configurable monitors and variability-aware runtime verification in general, (b)
present methods to synthesize concise featured monitors from specifications in
a featured variant of linear temporal logic (LTL) [11], and (c) introduce a con-
figurable variant of the stream-based specification language Lola [12] together
with a family-based analysis for well-formedness and efficient monitorability that
exploits commonalities across system variants. While there exist many different
approaches to runtime monitoring and verification, automata-based and stream-
based approaches are among the most prominent [24]. Hence, we concretize the
idea of configurable-by-construction runtime monitoring for both of them.

Outline and contribution. This paper is structured as follows. We first dis-
cuss benefits and open challenges in a configurable runtime monitoring setting
(Section 2). Then, we introduce an automata-based framework for configurable
monitors and their synthesis from featured LTL specifications (Section 3) and
extend the stream-based specification language Lola to the configurable setting
(Section 4). These two orthogonal approaches are intentionally presented in self-
contained sections to separate concerns and allow interested readers to choose
the approach according to their needs. We close the paper by summarizing our
findings and related work and provide an outlook on future work (Section 5).

2 The Quest of Configurable Runtime Monitoring

Considering monitors to be themselves configurable opens many new challenges.
In this section, we first introduce a running example of a configurable system
from the automotive systems domain before we discuss selected challenges and
how they are addressed in this paper.

2.1 Feature-oriented Example

While conducting research on real-world runtime monitoring of vehicles [22,9],
we encountered the need for monitor configurability. Inspired by this example,
we here establish a running example on feature-oriented systems modeling.

Real driving emissions tests. It is well known that the real driving emissions
(RDE) regulation, put in force by the European Union [29], can be cast into a
runtime monitoring problem using existing stream-based runtime monitoring
techniques [22]. An RDE test is supposed to evaluate the emissions of a vehicle
under realistic conditions.? In recent work, we presented an Android application

3 Similar test procedures exist for characteristics of electric vehicles, for instance, those
issued by the United States Environmental Protection Agency [31].
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[9] that enables laypersons to conduct lightweight RDE tests via the standard
on-board diagnostic (OBD) interface — a component any modern car is required
to be equipped with [28]. At its core, our application relies on the runtime
monitoring framework RTLola [18]. As different cars usually have different fuel-
consumption characteristics, are fully electric, or have different sensors, they
provide different information via OBD. To this end, the RTLola specification
needs to be adapted to each car based on the car’s configuration. Currently, the
required RTLola specifications for the different configurations are pieced together
in an ad-hoc fashion [9].

For example, to compute the amount of emitted pollutants, such as nitrous
oxide (NOx), the ezhaust mass flow (EMF), i.e., the mass of exhaust emitted per
time unit, must be known in addition to the relative concentration (in ppm) of
the pollutant in the exhaust gas. While many modern diesel cars come equipped
with sensors providing the relative concentration of nitrous oxide, the EMF is
rarely provided directly via OBD due to the car not having of an EMF sensor.
Fortunately, the EMF can be computed based on various other values such as
the mass air flow (MAF) in combination with the fuel rate (FR) or the fuel-air
equivalence (FAE) ratio.

Hence, the car is configurable by providing different sensors that can be used
for the RDE test. For determining whether the RDE test itself passes, monitor-
ing techniques might be used to establish a monitor observing the sensor data.
However, in this case, both the system being monitored as well as the monitor
itself should configurable as they depend on the cars sensor configuration.

Feature-oriented modeling. Variability in configurable systems can be ab-
stractly described, e.g., using well-known concepts from feature-oriented system
development [2]. Here, configuration options are encapsulated in features as op-
tional or incremental units of functionality [32] where each set of features stands
for a system configuration. Not all configurations are feasible in practice: For
instance, any car without an EMF sensor or MAF sensor cannot be used for
RDE tests since then, the EMF cannot be obtained by neither sensing nor com-
putation. Such constraints on feasible system configurations are usually specified
by feature diagrams [20] to describe the set of valid configurations. Feature dia-
grams are hierarchical diagrams over features where the parents of features have
to be also included in the configuration containing the respective feature. A fea-
ture diagram for our RDE example is shown in Fig. 1. Here, if the FR feature
is included in the system variant, this requires feature EMFc to be included as
well.* Branching connectives in feature diagrams might also impose constraints
on children, e.g., any configuration that has the RDE feature is also required to
include at least one of the features EMF, NOxs, or COs. Differently, the EMFc
feature requires both, the MAFs feature and the FR feature to be included to-
wards a valid configuration. In total, there are 3 4+ 4:(1 + 2-3) = 31 different

4 For brevity, we shorten the feature names for computation and sensor features with
tailing ¢ and s, respectively.
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RDE
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Fig. 1. Feature diagram of the configurable RDE system.

system variants, e.g., {RDE, NOxs} and {RDE, EMF, EMFc, MAFs, FAEs}, but not
{RDE, NOxs, EMFc}.

2.2 Challenges

While configurable system design and analysis is a well-established area, e.g., in
feature-oriented software development, the link to runtime monitoring techniques
is still missing. Indeed, the example of Section 2.1 demonstrates that there is a
need for specification mechanisms that treat configurations as first-class citizens.
It should be clear that similar considerations apply to other scenarios where vari-
ability plays a key role, e.g., monitoring of computer networks or microservice-
based cloud applications where reconfiguration and scaling happens on a rather
frequent basis.

Towards our configurable-by-construction approach to runtime monitoring
that establishes the aforementioned link, we now identify five challenges that
are to be addressed:

(1) Featured specification languages: As a first step, variability-aware spec-
ification languages for runtime monitoring and verification have to be developed
or existing languages have to be adapted to account for variability. Such lan-
guages should yield monitor families, i.e., sets of monitors for different configu-
rations, and may in addition offer support for more advanced scenarios such as
online reconfiguration without disrupting any ongoing monitoring.

(2) Family-based monitoring: Given a featured specification, it has to be
possible to decide properties of this specification over all possible configurations
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without suffering from the exponential blowup in the number of features. In
particular, in case a monitor has to be configured at runtime, as in Section 2.1,
separate monitors for each valid configuration are often infeasible. Similar as for
family-based analysis approaches, where an all-in-one analysis on a family model
avoids the combinatorial blowup that arises within a one-by-one analysis of each
configuration [30], a solution to this challenge could be to aim towards family
monitors that are configurable and establish all-in-one family-based monitoring.

(3) Synthesis of monitors: For arriving at a monitor we have to be able
to effectively synthesize such from featured specifications. This applies to moni-
tors for single configurations but also to family monitors to enable a family-based
monitoring approach as described in (2). It might be also possible that for certain
configurations no monitor can be synthesized. The challenge is here to efficiently
check well-formedness of a configuration, i.e., whether a monitor can be synthe-
sized for the configuration, and to determine all well-formed configurations for
which a family monitor can be synthesized. Another interesting question would
be: Can we give an upper bound on the required memory and computation time
of each single configuration monitor or family monitor?

(4) Matching monitor and system configurations: Configurable monitors
can provide monitors with different functionalities depending on the contexts of
the monitor or to enable reconfigurations in the case of family monitors. How-
ever, their primary use case might be monitoring systems that are themselves
configurable. In Section 2.1 configurable monitors are required to adapt to the
cars configuration of sensors on which the monitor bases its verdict of pass-
ing the RDE test. For such cases, mechanisms that match system and monitor
configurations have to be developed.

(5) Suitable monitor configurations: Monitor configurations may also be
more suitable than others [5]. Returning to Section 2.1, the EMF sensor might
be preferred to EMF computation, as it is presumably more precise than a value
computed based on other sensor data. Then, the configuration of monitors turns
to an optimization problem: What is the most suitable monitor configuration
given a requirement, e.g., the matching to system configurations as of (4)?

2.3 This paper

Exhaustively addressing all of the challenges raised above goes beyond the scope
of this paper. In the following, we tackle some aspects towards configurable
monitors by presenting an automata-based and a stream-based approach.

The automata-based approach is used to enhance standard LTL monitorabil-
ity techniques [24] to the feature-oriented setting, presenting featured monitors
as formalism to specify family monitors (addressing challenge (2)) and a synthe-
sis algorithm towards monitors for properties in featured LTL [11] (3).
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Our stream-based approach relies on the specification language Lola®, for
which we introduce a configurable variant (1). We present family-based anal-
ysis algorithms for well-formedness (3) [12] and efficient-monitorability of con-
figurable Lola specifications that exploits commonalities between configurations
and thus mitigates the exponential blowup in the number of features (2).

3 Configurable Automata-Based Monitoring

In this section, we tackle the problem of constructing featured monitors by means
of an automata-theoretic approach to runtime monitors [7,24] that are config-
urable through features.

3.1 Preliminaries

For a finite set X we denote by X* and X* the sets of finite and infinite sequences
of elements in X, respectively, and by € € X* the empty sequence.

Propositional logic. By B(X) we denote the set of Boolean expressions over X,
given by the grammar ¢ ::= true | | =¢ | ¢ A¢ where variables x range over X.
We use well-known Boolean connectives such as V, —, etc. from which a Boolean
expression can be easily obtained using standard syntactic transformations such
as De Morgan’s rule. Further, we define false = —true. The satisfaction relation
F C p(X) x B(X) is defined in the usual way, where for ¥ C X and ¢ € B(X)
we have Y F ¢ if ¢ evaluates to true when all variables in Y are assumed
to be true and all variables in X \ Y are false, respectively. We denote by
[¢] ={Y C X | Y E ¢} the set of all ¢-satisfying sets. With x(¢) € B(X) for
a formula ¢ € B(X) we identify a characteristic formula that is unique modulo
¢-satisfaction, i.e., for all ¢, ¢’ € B(X) with [¢] = [¢'] we have x(¢) = x(¢').°

Linear temporal logic. To specify temporal properties, we rely on linear
temporal logic (LTL) [26]. An LTL formula over X is given by the grammar

o u= true|z| ¢ |pAp|Xp|pUp

where x ranges over X . Basically, an LTL formula is a Boolean expression and we
essentially use the same derived notations but with including the next operator
X and the until operator U. The size |¢| of an LTL formula ¢ is defined as the
number of contained operators. An infinite sequence m € X% with m# = momy ...
satisfies an LTL formula ¢, written © F ¢, if either ¢ = true, ¢ = z and
mo=2x,¢0=—and 7, p =1 Ay and T E ¢ as well as T F ¢', ¢ = Xtp and
mma ... E 1, and ¢ = ¥Uy’ and there is a k € N such that mpmr1 ... F ¢’ and
miTit1 - .. E ¢ for all ¢ < k.

® This applies to all variants of Lola, including the original variant [12], Lola 2.0 [17],
and RTLola [18]. For simplicity, we use “Lola” as an umbrella term here.

5 A canonical candidate for x(¢) would be the disjunctive normal form x(¢) =
VYE[[¢>]] (Apey T A /\IEX\Y —z), but also any other uniquely chosen formula, e.g.,
focusing on small lengths, would be suitable.
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Monitors. We loosely follow definitions for automata-theoretic runtime moni-
toring according to Bauer et al. [7].

Definition 1 (Monitor). A monitor is a tuple A = (Q, X, d,1) where Q is
a finite set of control states containing verdict states T, 1 € @, X is a finite
input alphabet, §: Q X X — Q is a transition function where é(p,a) = p for all
pe{T,L} anda € X, and 1 € Q is an initial state.

Intuitively, a monitor is a deterministic finite state automaton that contains two
accepting states V = {T, L} that are traps and formalize verdicts T and L. For
m € X* with 7 = momy ... ™, we write §(g,7) for 6(d(q, 7o), 71 ... 7y), i.e., the
state reached after consuming =, where 6(q,€) = g.

Definition 2 (Monitor for LTL). Let ¢ be an LTL formula over X. A mon-
itor A= (Q, X, 4,t) is a monitor for ¢ if for all m € X*

0(e,m) =T 4ff mpE ¢ for all p € X¥ and
0(e,m) =L iff mpH ¢ for all p e X«.

Intuitively, a monitor for an LTL formula ¢ observes a sequence m and yields
a verdict T or L if ¢ is surely satisfied or not satisfied, respectively, w.r.t. to all
extensions of 7. Conversely, if no verdict state is reached via 7, a final decision
about satisfaction of ¢ cannot be drawn.

Theorem 1 ([7]). For any LTL formula ¢ over X there is a monitor A¥ for

w with a state space of size (’)(22“"').

Feature-oriented systems. We denote the set of abstract features by F' and
say that any set C C F' is a configuration. To formally describe behaviors of
a configurable system family, featured transition systems (FTSs) [11] enhance
transition systems by feature guards, i.e., Boolean expressions over F' that are
annotated to transitions. Formally, an FTS is a tuple 7 = (S, F, X, A, I) where
S, F, and X are finite sets of states, features, and actions, respectively, A C
S xB(F) x X x S is a featured transition relation, and I C B(F) x S is a set
of featured initial states. The projection of T onto a configuration C' C F is the
transition system T|c = (S, X, Al¢, I|c) where I|¢ is the set of initial states ¢
for which there is (¢,¢) € I with C E ¢ and Alc C S x X' x S is the smallest
transition relation that satisfies

(s,0,a,t) e A CE@
(s,a,t) € Ale

The semantics of an FTS 7T is thus a family of transition systems {7|¢ | C C
F}.™ To specify variability-aware properties, e.g., for FTSs, featured linear tem-
poral logic (fLTL) has been defined as featured extension of LTL [11]. Formulas

7 Note that behaviors for invalid feature configurations can be specified through non-
satisfying feature guards on initial states, leading to empty initial state projections.
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in fLTL over a feature domain F and an alphabet X are of the form [¢]¢ where
¢ € B(F) is a feature guard over F and ¢ is an LTL formula over X. For a set
@ of fLTL formulas, we define @|c = /\(4),c4 crp ¥ as the LTL formula that is
effective in a feature configuration C' C F.

Ezxample 1. Let us specify properties for the configurable RDE system example
(see Section 2.1). In case the EMF sensor is present, a desirable property is that
no computation of the EMF is triggered, as the EMF should be directly obtained
from the EMF sensor. This could be expressed, e.g., by an fLTL formula

Y9 = [EMFs]=0comp-EMF.

Another example would be the property that if the EMF computation feature
is included and no EMF sensor is present, then after the MAF sensor has been
read, in the next step the EMF must be computed. This is expressed by

1 = [EMFc A —=EMFs|O(use-MAF-sensor — Xcomp-EMF).

3.2 Featured Monitors
Combining the concepts of monitors and FTSs, we define featured monitors:

Definition 3 (Featured Monitor). A featured monitor is an FTS M =
(Q,F, X, A I) where Q contains verdict states V' and where for all C C F':

(i) (g,true,a,q) € A forallgeV and a € X
(ii) for allp € Q and o € X there is exactly one (p, ¢, a,q) € A with C E ¢
(iii) there is exactly one (¢,) € I with C E ¢

Note that any projection M| of a featured monitor M onto a configuration
C C F is a monitor according to Definition 1 when interpreting A|c as tran-
sition function and I|c as single state. This monitor is well-defined due to the
uniqueness of C-satisfying transitions and initial states. Intuitively, a featured
monitor M ensembles multiple monitors M| for feature configurations C' C F'.
To combine monitoring functionalities of featured monitors, we define a fea-
tured monitor composition by a product construction that adjusts feature guards
and verdicts. For this, the verdict composition on some p and ¢ is defined by

T ifp=Tandg=T
pfg = <1 ifp=lorg=_1
(p,q) otherwise.

Definition 4 (Featured Monitor Composition). Let M; = (Q;, F, X, A;, I;)
fori € {0,1} be two featured monitors over a common feature domain F and al-
phabet X. The composition of Mgy and M; is defined by MoNM; = (Q, F, X, A, I)
where
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- Q=VU(Qox )
- ACQXB(F)x X xQ is the smallest featured transition relation such that

(p07¢05a5q0) S AO (p1a¢1,a,(J1) S Al
polMp &V peV aelX

(por'p17X(¢0/\¢)1)a04aQO|_|QI) €A (pvtrue7a7p) €A

= I={(x(¢o A1), 0Me1) | (0,0) € Lo, (¢1,01) € I }.

Recall that x(¢) denotes a uniquely defined ¢-equivalent Boolean expression and
that V' = {T, L} is the set of verdict states.

Lemma 1. MM M; is a featured monitor for any two featured monitors My
and M1 over a common feature domain and alphabet.

3.3 Synthesizing Featured Monitors

We use formulas in fLTL to specify variability-aware monitoring properties and
describe how to synthesize featured monitors. Recall that for a set @ of fLTL
formulas, we define @|c = A4 e crp ¢ as the LTL formula that is effective in
a feature configuration C' C F.

Definition 5 (Featured Monitor for fLTL). Let & be a finite set of fLTL
properties over F' and X. A featured monitor for @ is a featured monitor M
over F' and X such that M|c is a monitor for ®|c for all configurations C C F.

Thus, a featured monitor for a set of {LTL formulas @ provides a concise repre-
sentation of a family of monitors that verdicts LTL properties for configurations
to be jointly satisfied.

Let now [¢]p be an {LTL formula over the feature domain F' and an alphabet
Y. Further, let A¥ = (Q, X, 0,¢) be the monitor for ¢ according to Theorem 1.
We then define the featured monitor Mg =(Q,F, X A I) by

A = {(e,x(9),0,6(q,2)), (¢, x(—¢),.q) | g€ Q€ X }

and I = {(x(¢),¢), (x(=¢), T)}. Note that M is indeed a featured monitor for
[¢]¢ since for all configurations C' C F with C' F ¢ we have that M7|c = A?
and A% is a monitor for .

Theorem 2. For any set of fLTL formulas &, we have that M® = |_|[¢}90€45 Mg
is a featured monitor for &.3

Ezxample 2. Let us describe how to synthesize a featured monitor from the set
of fLTL formulas & = {1, } from Example 1. First, we construct monitors
for 1y and 17 according to Theorem 1 and, following the construction for Mﬁ

8 The corner case where |®| = 0 is covered by the T-verdicting featured monitor Miie

that arises from A*™* = (V, X6, T) where §(p,a) =pforallpe V and a € X.
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Mo: Ml:

EMFs 0 I\{comp-EMF} EMFcA-EMFs 2\{use-MAF-sensor}
{comp-EMF'} {comp-EMF} {use-MAF-sensor}
o

ﬁEMIE)Cr:i © ﬁEMchEMFﬁsGﬁ - 5

Fig. 2. Synthesized featured monitors Mo and M for ¥y and 11, respectively

EMEs @1 I\{comp-EMF} EMFC/\_‘EMFS I\{use-MAF-sensor}
{comp-EMF} { comp-EMF} ‘ {use-MAF-sensor}

2 ()

ﬂEMFc/\ﬂEMFsHG:ﬂ -

Fig. 3. Featured monitor composition M?® = Mo M1 M; for & = {10, 41}

2\{comp-EMF}

above, include feature guards towards My and M;. In Fig. 2 we depict both
My and M. For brevity, we only show the reachable parts where feature guards
are satisfiable, annotated the transitions with the set of possible actions for the
transition, and only indicated the feature guard once in initial states.

In Fig. 3 we show the featured monitor M® = M, M M, obtained by the
construction of Theorem 2. Note that there is also an initial state (false, (p, q))
not depicted in Fig. 3 due to the unsatisfiable feature guard. The featured moni-
tor M? as of Fig. 3 provides a non-trivial L-verdict and only a trivial T-verdict
for configurations that do not have EMF computation nor sensor. This configu-
ration can be considered as non-valid, since then, no RDE test is possible (see
Section 2.1). However, there are also properties that have both, non-trivial L-
and T-verdicts: Consider the property of passing the NOx emission test in an
RDE setup, i.e., that within 60 and 120 minutes, a valid RDE situation arises
and the NOx emissions are below a threshold of 80 mg/km. To specify this prop-
erty in fLTL, observe that time intervals can be expressed in LTL by chains of
X-operators, e.g., O!># ¢ stands for the formula XX (¢ V X(p V X)) specifying ¢
to hold within 2 and 4 time units. With this at hand, the fLTL property for the
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NOx passing RDE test could be specified by

wya?;‘ed = [NOxs]O8012% (yalid-RDE A NOz-emission < 80).

If the test is valid within the time interval and the emissions are below the
threshold, then the featured monitor verdicts T, while when passing the upper
time bound of 120 without reaching a valid RDE state where the emissions are
below the threshold, the featured monitor verdicts L. o

3.4 Concise Featured Monitors

In the last sections, we introduced featured monitors and provided a method
to synthesize such from fLTL specifications. To keep the presentation clean,
we disregarded several technicalities that, however, would increase feasibility of
the approach. First, our definitions always range over all possible configurations
C C F but could well be defined to range over valid configurations only. Sec-
ond, our synthesis construction could be enhanced by reduction steps to obtain
more concise featured monitors. For instance, we could join featured transitions
(p, 9, ,q) and (p, @', a, q) towards (p, x(¢ V ¢'),a, q) as well as featured initial
states (¢,¢) and (¢',¢) towards (x(¢ V ¢'),¢). Transforming featured monitors
into the related formalism of FTSs, we can directly apply dedicated bisimula-
tion techniques [8] towards a compact featured monitor. For this, we label the
verdict states T and L by corresponding atomic propositions T and L, respec-
tively, and keep all other states not labeled at all. Featured bisimulation is then
achieved w.r.t. verdicts, preserving the featured monitor properties.

4 Configurable Stream-Based Monitoring

As discussed in Section 2, there is a need for featured specification languages for
runtime monitoring. We now address this challenge by presenting an extension
of the stream-based specification language Lola [12]. For simplicity, we will do so
for the original variant of Lola [12]. Our extension is orthogonal to the extensions
introduced by Lola 2.0 [17] and RTLola [18]. It should be straightforward to use
the same techniques to introduce variability to those extensions.

We first restate the syntax and semantics of Lola as well as the central theo-
rem necessary for constructing monitors out of Lola specifications. As our con-
tribution, we then (a) introduce a notion of composability of Lola specifications,
(b) use this notion to define configurable Lola specifications, and (c) present a
family-based analysis for configurable Lola specifications ensuring that a moni-
tor can be constructed for each configuration of interest and that the amount of
memory it requires is independent of the length of its input.

4.1 Preliminaries

Let’s start by introducing the stream-based specification language Lola.
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Definition 6 (Lola Specification [12]%). Let T be a set of data types and
S be a set of typed stream variables, i.e., each s € S has an associated type
T, € T. A Lola specification over T and S is a partial function f: S — E
assigning stream variables to typed stream expressions. The set of typed stream
expressions E is defined inductively by:

(i) Constants and stream variables of type T are expressions of type T .
(it) Let g: Ty x --- x T}, = T be a k-ary operator and n,,...,n, be expressions
of type T}, ..., Ty, then g(ny,...,mn,) is an expression of type T.
(iii) Let n be a Boolean expression and 1, and 1y be expressions of some type
T, then ite(n,ny,ny) is an expression of type T .
(iv) Let s be a stream variable of type T, ¢ be a constant of type T, and z € Z,
then sz, c] is a stream expression of type T.

A Lola specification f defines stream expressions for the set dom(f) C S of
stream variables. Those variables are coined dependent while the remaining vari-
ables are coined independent. The idea is that the stream expressions constrain
the values the dependent variables can have at certain points in time.

The semantics of Lola is defined in terms of evaluation models. An evaluation
model o of length N assigns a sequence o(s) = o¢(s)---opy(s) of values of type
T,, coined a stream, to each stream variable s € S. Note that the individual
streams all have the same length N. Given an evaluation model o we inductively
define an evaluation function [-]; for stream expressions at time ¢:

[e]: = [s]: = a4 (s) LoCns - sm)le = g(lmes - - [nele)

if [n]; = true

Tite(n, 1, ma)]s = {Mt

[75]: otherwise

Oy (s Hf1<t+z<N
[slz; lll —{ o42(5) |
otherwise

An evaluation model o is consistent with a Lola specification f, denoted
by o E f, if and only if [f(s)]: = o,(s) for all s € dom(f) and 1 < ¢ < N.
That is, the values of each dependent stream variable s € dom(f) over time are
consistent with the expressions specified by f.

Let us now have a look at a concrete example taken from Section 2.1. The
RDE regulation stipulates that the acceleration a; at time ¢ shall be computed
as follows [29, ANNEX IITA, Appendix 7a, 3.1.2]:

ay = (Utfl + Ut+1)/(2 . 36)

9 We slightly deviate from the original definition for notational convenience. In partic-
ular, we do not allow expressions of the form 7[z, ¢] where 7 is an arbitrary stream
expression. It has been shown that those can be rewritten to sz, c] by introducing
an additional stream variable s’ such that f(s") = 7.
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Hence, the acceleration at time ¢ shall be computed using the velocity v at time
t —1 and t + 1. The translation into Lola is straightforward:

v[—1,0] + v[+1, 0]
2-3.6

fla) =

By using an offset expression of the form s[z,c] we can access the value of the
stream variable v in the past as well as the future. The default value ¢ in an
offset expression is used at time ¢ if and only if the time ¢ + z lies outside of the
streams provided by the evaluation model. Offset expressions are arguably the
most innovative feature of Lola and responsible for its great expressive power.
We refer to the original Lola paper for a detailed discussion [12].

Online monitoring and well-formedness. An online monitor for a Lola
specification incrementally computes values for the dependent stream variables
based on incrementally observed independent stream variables. In the following,
we refer to the streams for the independent variables as input streams and to
the streams for the dependent variables as output streams.

Using this terminology, an online monitor for a specification f computes
output streams from input streams such that those streams together form an
evaluation model consistent with the given specification. Being able to construct
such a monitor is the primary purpose of a Lola specification.

In case of our example, assume that v is an independent variable, i.e., the
velocity is provided as an input to the monitor, the monitor will then compute
the stream for the acceleration a as defined by the RDE regulation.

Unfortunately, with the provided definitions, it might be impossible to com-
pute output streams from input streams as no evaluation model may exist or
there might be multiple such models for a given set of input streams leading to
ambiguity [12]. To address this issue, a notion of well-definedness is introduced: A
Lola specification is well-defined if and only if for any set of appropriately typed
input streams, all of the same length, it has exactly one consistent evaluation
model [12]. This restriction ensures that the monitor is well-defined.

From a practical perspective, however, well-definedness is difficult to deal
with. Instead, the original paper [12] introduces a purely syntactic criterion
called well-formedness such that the following central theorem holds:

Theorem 3 ([12]). If a specification is well-formed, then it is well-defined.

Now, well-formedness is defined by means of a dependency graph:

Definition 7 (Dependency Graph). Let f be a Lola specification over the
stream variables S. The dependency graph for f is a directed and weighted multi-
graph G = (S, E) where E is the set of edges. An edge is a triple (s,,s,,z)

T Y
where s, s, € S and z € Z. The set E of edges contains an edge (s,,s,, z) if
and only if s, € dom(f) and the expression f(s,) contains an offset expression

s,lz, c] for some constant c.
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Intuitively, the existence of an edge (s,, s, ,2) in E records the fact that the

stream for s, depends on the stream for s, with an offset of z. If there exists a
cycle whose weights z sum up to zero, i.e., a zero-weight cycle, then the value
at a given time circularly depends on the very same value leading to ambiguity

issues. Well-formedness forbids precisely such viscous cycles.

Definition 8 (Well-Formedness). A specification is well-formed if and only
if its dependency graph does not contain any zero-weight cycle.

By checking well-formedness of a specification, we make sure that a monitor
for it is uniquely defined. It is this property of well-formedness that has to be
checked in order to ensure that a monitor can be constructed using the techniques
presented in the original Lola paper [12]. We refer to this paper for further details
regarding the monitor construction and Theorem 3. Note that the zero-weight
cycle problem, i.e., the problem of deciding whether a zero-weight cycle exists, is
known to be NP-complete, which can be shown by a simple reduction from the
NP-complete subset-sum problem [3, Theorem 3.12].

4.2 Configurable Lola

We now introduce an extension of Lola that yields monitor families and accounts
for variability. To this end, we first define a notion of composition enabling the
combination of multiple Lola specifications into one.

Definition 9 (Composition). Two Lola specifications f; and f, are com-
posable if and only if their dependent variables are disjoint. Formally that is
dom(f;) Ndom(fy) = 0. For two composable specifications f; and fy, we define
their composition f; || fo : dom(f;) Udom(fy) = E as follows:

fi(s)  if s € dom(f)
fa(s)  if s € dom(fs)

Note that the composition f, || fo is itself a Lola specification. The set of depen-
dent variables of fy || fo is dom(f;) U dom(fs).

(f1 I f2)(s) := {

Without the restriction to composable specifications, the composition of two
specifications would be problematic since the sets of dependent variables may
overlap, thus, containing multiple potentially different equations for the same
variable thereby leading to ambiguity.

Note that the composition operator || is associative and commutative. For
that reason, the order of composition does not matter and any set of pairwise
composable Lola specifications has a unique composition.

Leveraging this notion of composability, we now have all the tools to formally
introduce configurable Lola specifications:

Definition 10 (Configurable Lola Specification). A configurable Lola spec-
ification is a set F' = {fy,..., f,,} of Lola specifications, i.e., f; is a Lola spec-
ification for each 1 < i < m. We call the individual specifications f; features of
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EMF sensor feature (EMFs):

input emf_sensor: Float64; // g/s
output emf = emf_sensor;

EMF computation feature (EMFc):

input maf_sensor: Float64; // g/s
input fuel_rate: Float64; // g/s
output emf = maf_sensor + fuel_rate;

FR sensor feature (FRs):

input fuel_rate_sensor: Float64; // g/s
output fuel_rate = fuel_rate_sensor;

FR computation feature (FRc):

input maf_sensor: Float64; // g/s
input fuel_air_equivalence_sensor: Float64; // ratio
output fuel_rate = maf_sensor / (14.5 * fuel_air_equivalence_sensor)

Fig. 4. Features extracted from the different RDE Lola specifications [9,22].

F'. A configuration C' of F' is a subset of F' such that all features included in the
subset are pairwise composable.

By composition as defined in Definition 9, every configuration gives rise to
a uniquely defined composite specification. In the following, we make use of
this fact and simply treat configurations as if they are Lola specifications. In
particular, we apply the concepts of well-formedness and efficient monitorability
directly to configurations.

Featured Lola specifications make variability a first-class concept enabling
the specification of configurable-by-construction runtime monitors. Returning
to Section 2.1, we can now use different features for the different ways the EMF
and fuel rate can be determined (see also Fig. 1). Fig. 4 shows four features,
two for obtaining the EMF and two for computing the fuel rate. It is also a
natural consequence of Definition 10 that the different ways to compute the
EMF or fuel rate are mutually exclusive because those features overlap in their
dependent stream variables (defined using the output keyword), i.e., they are
not composable. Using a configurable Lola specification, those features can now
systematically be combined as required.

Well-formedness of configurations. As with ordinary Lola specifications,
we have to ensure that any configuration is well-formed or at least determine
the configurations which are not. In particular, when reconfiguration at runtime
is required, we have to ensure that any configuration of interest gives rise to a
well-formed composite specification. Otherwise, at runtime, it might turn out
impossible to construct a monitor for a certain configuration.
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In case a feature is already not well-formed itself, we can conclude that any
configuration containing this feature will also be not well-formed:

Lemma 2. If any of the individual features is not well-formed, then any config-
uration containing the respective feature is not well-formed.

This is easy to see as the dependency graph of the feature is a subgraph of
the dependency graph of the configuration. Hence, any zero-weight cycle will
also exist in the dependency graph of the configuration thereby rendering the
configuration itself not well-formed.

Unfortunately, the reverse is not true, i.e., even if the individual features are
all well-formed, this does not imply that any configuration is also well-formed.
The dependency graph of a configuration combines those of the features and may
thereby introduce new zero-weight cycles that are not present in the dependency
graphs of any of the features when considered in isolation.

An obvious way to decide whether all configurations are well-formed would be
to construct the specification for each configuration and then determine whether
it is well-formed. Considering each configuration of a configurable Lola specifica-
tion in isolation and checking its well-formedness is, in general, exponential in the
number of features of that specification, thus rendering it infeasible as soon as
the amount of features grows large. As we will see, using a family-based analysis
for checking well-formedness prevents this blowup by exploiting commonalities
between different configurations.

4.3 Family-Based Specification Analysis

For checking well-formedness and efficient monitorability for all configurations
without an exponential blowup, we present a family-based analysis that exploits
commonalities between configurations. Instead of using a dependency graph for
each configuration in isolation, we construct a family dependency graph:

Definition 11 (Family Dependency Graph). Let F = {f;,..., [, be
a configurable Lola specification with m features over the stream wvariables S.
The family dependency graph for F' is a directed, weighted, and feature-labeled
multi-graph G = (S, E) where E is the set of edges. An edge is a quadruple
(8418, 2,9) where s,,s, € S, z € Z, and 1 < i < m. The set E of edges con-
tains an edge (s, s,,2,1) if and only if s, € dom(f;) and the expression f;(s,)

T Y
contains an expression s, [z, c| for some constant c.

y[

Intuitively, the existence of an edge (s, Sys 2 i) in E records the fact that the
stream for s, depends on the stream for s, with an offset of z when activating the
feature f;. The family dependency graph is a superimposition of the dependency
graphs of each individual feature with additional edge labels for the features

they belong to. Hence, the following criterion is easily established:

Lemma 3. If the family dependency graph of a configurable Lola specification
does not contain a zero-weight cycle, then every configuration is well-formed.
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fuel_air_equivalence_sensor ‘

(0, FRc)

(0, FRc)

(0, FRs)

fuel_rate_sensor fuel_rate maf_sensor

(0, EMFc)

(0, EMFs)

emf_sensor emf

Fig. 5. Family dependency graph (without the dashed lines) for the configurable Lola
specification in Fig. 4. The arrows are to be read as “depends on” with the given offset
and feature. The dashed lines are with the additional FRc2 feature.

Clearly, the dependency graph of every configuration is a subgraph of the
family dependency graph. Therefore, if the family dependency graph does not
contain a zero-weight cycle then the dependency graphs of any individual con-
figuration cannot contain such a cycle either.

Fig. 5 shows the family dependency graph (without the dashed lines) for
the configurable Lola specification in Fig. 4. It does not contain any zero-weight
cycles, in fact, it does not contain any cycles at all. Hence, all configurations for
the configurable Lola specification are well-formed.

Lemma 3 gives us a sufficient criterion for well-formedness of every configu-
ration. This criterion can be checked with the same algorithms and techniques
as checking well-formedness of an individual specification. In contrast to the
naive approach, which would consider each configuration individually, these al-
gorithms can now exploit commonalities between the dependency graphs of the
different configurations thereby mitigating the exponential blowup due to the
often exponential number of configurations.

A Necessary Criterion. While Lemma 3 gives us a sufficient criterion for well-
formedness of all configurations, this is actually not a necessary criterion. In-
tuitively, only those zero-weight cycles pose a problem that can actually arise
from a configuration, i.e., a set of pairwise composable features. By adding this
additional condition for cycles, we obtain the following theorem:

Theorem 4. Every configuration is well-formed if and only if every zero-weight
cycle in the family dependency graph contains at least two edges labeled with
features which are not composable.

The dependency graph of an individual configuration can be obtained from
the family dependency graph by removing all edges corresponding to features
which are not enabled. Now, if a zero-weight cycle in the family dependency
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graph contains at least two edges labeled with features which are not composable,
this cycle will not be included in a dependency graph of any of the configurations
as a configuration can only contain features which are pairwise composable.
If this is the case for all zero-weight cycles of the family dependency graph,
then none of these cycles will be included in the dependency graph of any of
the configurations. As a result, all configurations are well-formed. Conversely,
if a zero-weight cycle exists which does not contain two edges that are labeled
with non-composable features, then the respective features on this cycle can be
composed to form a specification which is not well-formed.

Consider an extension of the configurable Lola specification in Fig. 4 with
the following additional feature (FRc2) for computing the fuel rate:

input maf_sensor: Float64; // g/s
input emf: Float64; // g/s
output fuel_rate = emf - maf_sensor;

This introduces additional edges in the dependency graph (dashed edges in
Fig. 5). With this feature, the family dependency graph now contains one ele-
mentary zero-weight cycle between fuel_rate and emf. Indeed, a configuration
with both the FRc2 and EMFc feature is not well-formed. Enabling both features
would mean that the fuel_rate should be computed based on the emf but at
the same time the emf should be computed based on the fuel_rate. This cycle
yields that a monitor is no longer well-defined. Note that FRc2 and EMFc are
composable because they contain no overlapping definitions. With the family-
based analysis this can be detected solely relying on the family dependency graph
and without considering all 2° = 32 configurations one-by-one.

Complezity. As the zero-weight cycle problem, the problem of finding a zero-
weight cycle not containing two edges that are labeled with non-composable
features is also NP-complete. It is more general than the zero-weight cycle prob-
lem because it contains an additional condition on cycles. It also lies in NP
because it is easy to verify in polynomial time that a cycle is zero-weight and
does not contain two edges that are labeled with non-composable features.

For practical purposes, it makes sense to collapse all edges (s,, Sy z,1) be-
tween the same vertices s, and s, that have the same weight z into a single
edge (s,,s,,2, ) where I is the set of all feature labels found on any of these
edges. This can drastically reduce the number of edges and thereby the number
of potential zero-weight cycles to be considered.

Efficient monitorability. Recall that an additional property of Lola specifica-
tions that is of practical interest is efficient monitorability. Efficiently moni-
torable specifications are guaranteed to be monitorable with a bounded amount
of memory independent of the length of the involved streams. A Lola specifica-
tion is efficiently monitorable if and only if its dependency graph does not have
positive cycles [12]. Our family-based analysis and Theorem 4 is easily extended
to the question whether all configurations are efficiently monitorable:
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Theorem 5. FEvery configuration is efficiently monitorable if and only if every
positive-weight cycle in the feature dependency graph contains at least two edges
labeled with features which are not composable.

Practical impact. Checking the family dependency graph instead of the depen-
dency graph of each configuration in isolation can mitigate the exponential
blowup in the number of features. At the same time, it enables analyzing a
configurable Lola specification and makes sure that any configurations that ap-
pears in practice will indeed give rise to a well-formed and efficiently monitorable
specification. This, in turn, means that a monitor can be synthesized and that
its memory consumption will be bounded. Based on found zero-weight cycles,
configurations that would not lead a well-formed specification can be identified
ahead-of-time, providing a static guarantee for configurations at runtime.

We want to point out that Lola specifications can be parametrized and that
parametrization can also be used for configurable monitors. However, while em-
ulating features as we considered them with parameters and ite expressions is
possible to some extent, the traditional well-formedness analysis will not under-
stand that the different cases of “ite” are mutually exclusive. Thus, it would es-
sentially correspond to a coarse-grained analysis according to Lemma 3. Instead,
the analysis we propose here is more fine-grained. In addition, when emulating
features using parameters, the independent variables of all features would be
merged with no explicit distinction about which actually have to be provided
and which are merely an encoding artifact. Thus, our work complements param-
eters offering a more fine-grained analysis and explicit treatment of features and
independent variables. Together, parameters and features as we considered them
make Lola a perfect fit for configurable-by-construction runtime verification.

5 Concluding Remarks

We presented initial concepts towards a configurable-by-construction approach
for runtime monitoring, introducing featured monitors to serve the automata-
theoretic view on runtime monitoring, and configurable Lola specifications that
take on a stream-oriented view.

Related work. While we addressed some of the challenges for configurable-by-
construction runtime verification, this is still a largely uncharted field. In the
feature-oriented systems domain, Kim et al. [21] lift static analysis techniques to
determine those feature configurations where safety properties could be violated
and hence should be monitored during runtime. They address different problems
than we consider in this paper, not considering variability in the monitor itself.

In addition to the Lola family [12,17,18] there are also other stream-based
specification languages, in particular, TeSSLa [23] and Striver [19]. We expect
our insights on configurability to at least partially carry over to them. In addi-
tion, there are also stream-based specification mechanisms based on automata
theory [1] that provide the opportunity to consider the interplay between our
notion of featured monitors and configurable Lola specifications.
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Future work. Two notable dimensions that we did not consider yet in this
paper concerns the question of uninterrupted online reconfiguration and the sys-
tematic matching of monitor and system configurations. For this future work,
we could harvest results on reconfigurable systems analysis [14,13]. Monitors
that take causality information on the system into account [4] could be also
considered in the feature-oriented setting [16] and could trigger preemptive re-
configurations of features. Feature-oriented concepts can well be used to describe
context-dependent systems [25,15] or role-based systems [10]. Thus, our runtime
monitoring approach also enables monitoring systems to verdict contexts and
roles entities play, e.g., whether a network device has the role of a server, client,
or relay in different contexts.

To enhance the expressiveness of featured monitor specifications, our synthesis
algorithm to obtain featured monitors from sets of fLTL formulas could surely be
extended to arbitrary Boolean expressions over fLTL formulas. This requires the
definition of further composition operators on verdicts and featured monitors,
for which we solely defined the conjunctive counterpart M in this paper.
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