
Delayed-choice semantics for pomset families
and message sequence graphs‹

Author’s Version – 12 June 2023

Clemens Dubslaff and Christel Baier

Faculty of Computer Science
Technische Universität Dresden

Dresden, Germany
{clemens.dubslaff,christel.baier}@tu-dresden.de

Abstract. Message sequence charts (MSCs) are diagrams widely used
to describe communication scenarios. Their higher-order formalism is
provided by graphs over MSCs, called message sequence graphs (MSGs),
which naturally induce a non-interleaving linear-time semantics in terms
of a pomset family. Besides this pomset semantics, an operational se-
mantics for MSGs was standardized by the ITU-T as an interleaving
branching-time semantics using a process-algebraic approach. A key in-
gredient in the latter semantics is delayed choice, formalizing that choices
between communication scenarios are only made when they are inevitable.
In this paper, an approach towards branching-time semantics for pom-
set families that follows the concept of delayed choice is proposed. First,
transition-system semantics are provided where global states comprise
cuts of pomsets represented either by suffixes or prefixes of family mem-
bers. Second, an event-structure semantics is presented those benefit is
to maintain the causal dependencies of events provided by the pomset
family. These semantics are also investigated in the context of pomset
families generated by MSGs.

1 Introduction

During the last decades, much effort has been put into developing models for
concurrent systems to specify and reason about communication protocols. Mes-
sage sequence charts (MSCs) provide an intuitive formalism to describe scenarios
for asynchronously communicating processes. They are standardized by the ITU
[18] and have been also included into the current UML 2.0 specification [11]
as sequence diagrams. An MSC comprises time lines for each process on which
events of the respective process are totally ordered, and message arrows that
connect corresponding send and receive events between the processes. Two com-
munication scenarios given by MSCs can be composed by extending the time

‹ The authors are supported by Deutsche Telekom Stiftung, by the DFG through the
Collaborative Research Center SFB 912 – HAEC, the Excellence Initiative by the
German Federal and State Governments (cluster of excellence cfAED), the DFG-
projects BA-1679/11-1 and BA-1679/12-1, and the 5G Lab Germany.

2 Clemens Dubslaff and Christel Baier

lines of the first MSC by the time lines of the same process in the second MSC.
This naturally allows for specifying collections of MSCs by graphs over MSCs,
called message sequence graphs (MSGs): an MSG describes all those MSCs that
arise from sequential compositions of MSCs along paths in the MSG.

Example 1. In Figure 1, an example MSG is depicted that contains two non-
empty MSCs, both describing a communication scenario where process s sends
data to process r and waits for an acknowledgment. The left scenario branch
models the case where a failure during the transmission of data occurred, im-
posing a timeout at process s. Then, s resends the data to r, being either un-
successful again (see the self loop at the left box) or being successful (switching
to the right box). In the latter case, when r successfully received all data, an ac-
knowledgement is sent to s and the communication between s and r terminates.

to

Gbsp :

s
data

r

ack

s
data

r

Fig. 1. An example MSG for sender-receiver communication scenarios

Semantics for MSGs. In the taxonomy of models for concurrent systems
[34], different abstraction levels of semantics are provided along two orthogonal
axes: one distinguishes between non-interleaving and interleaving and the other
between branching-time and linear-time semantics. Non-interleaving semantics
model causal dependencies and the independence of actions in an explicit way.
Within branching-time semantics, the information when choices are made during
an execution of the system can be modeled, while linear-time semantics abstract
away from the points where these choices are made. To this end, non-interleaving
branching-time semantics can be seen as the most general semantics in this
taxonomy and interleaving linear-time semantics as the most abstracted ones.

MSCs naturally induce a non-interleaving linear-time semantics in terms of a
partially-ordered multiset (pomset) [30], provided by the total time-line orderings
and the fact that any send event has to precede its corresponding receive event
[1]. The composition of MSCs is defined syntactically by gluing process time
lines together. This corresponds to the local concatenation of pomsets [30] where
events of the same process are assumed to depend on each other. Thus, a non-
interleaving linear-time semantics for MSGs is naturally defined by a family of
pomsets comprising the MSCs that arise from concatenating pomsets of MSCs
along paths in the MSG. This semantics for MSGs is widely accepted in the
literature and often used to reason about MSGs (cf., e.g., [19,28,26,2,21,5] and
surveys [27,9]).

1. INTRODUCTION 3

Although the pomset semantics for MSGs is very natural, the standard se-
mantics for MSGs specified by the international telecommunication union (ITU-
T) in [17] is an interleaving branching-time semantics, defined through a process-
algebraic approach. Besides historical reasons, the choice of this approach has
been mainly motivated by providing an operational semantics for MSGs that
allows to reason about the step-wise behavior of systems specified by MSGs
[23,31]. The basic building blocks of the process-algebraic semantics are pro-
cess terms for MSCs [22] defined over atomic actions, standard concatenation ¨,
and standard choice `. These process terms have an interleaving branching-time
semantics. The standardized process-algebraic semantics for MSGs is obtained
by a well-known standard transformation from automata theory, leading to a
regular expression over process terms for MSCs [31]. Within this regular expres-
sion, special operators for concatenation, choice and recursion [24,17,23,31]1 are
employed:

– Concatenation is provided by weak sequential composition borrowed from
[33] those purpose is to transfer the local concatenation on pomsets [30] to
the world of interleaving branching-time semantics. The definition of weak
sequential composition is based on a permission relation that specifies how
process terms can be influenced by firing actions not contained in the process
term itself but in its context.

– The choice operator is given by delayed choice [3], an intrinsic linear-time
operator where choices between MSC fragments are delayed until they are
inevitable. According to [3], “the delayed-choice operator acts as a determin-
istic choice in the context of strong bisimulation by unifying process-algebra
terms with a common prefix”.

– Recursion is defined by adapting the recursion operator of [4] for MSGs with
rules for weak sequential composition and delayed choice [31].

The main challenge within the process-algebraic approach towards an opera-
tional semantics for MSGs comes into play when interpreting recursion on pro-
cess terms that involve weak sequential composition and delayed choice, as their
definition requires negative premises in the operator-defining rules. It is well
known that negative premises in operator-specifying rules impose several diffi-
culties when aiming towards fixed points [10]. Reniers, one of the authors of the
standardized process-algebraic semantics [17], noticed in his doctoral thesis [31]
that “the definition of the permission relation on recursive equations is extremely
difficult and no solution is found there yet” (see page 160 of [31]). Although [31]
adapted the standardized semantics to avoid recursive equations, his process-
algebraic semantics still contains negative premises in operator-specifying rules.
Besides others, this raises the question whether an operational semantics for
MSGs could be defined without sophisticated operators in terms of weak se-

1 The cited papers focus on high-level MSCs, i.e., MSGs which in addition allow for a
hierarchical structure and parallel composition. As high-level MSCs can be unfolded
into an MSG [2] without changing their operational semantics, we disregard the
parallel composition operator and focus solely on MSGs in this paper.

4 Clemens Dubslaff and Christel Baier

quential composition and delayed choice but where the main concepts of the
standardized process-algebraic semantics are maintained.

Our contribution. Following the concept of delayed choice but avoiding so-
phisticated process-algebraic operators, we define branching-time semantics for
pomset families. During the presentation of our semantics, we exemplify their ap-
plication to MSGs using the running example from the introduction. We first aim
towards interleaving branching-time semantics (as within the process-algebraic
approach defining delayed choice [3]) and present two different views on defining
transition systems for pomset families:

(1) Suffix transition systems arise from interpreting delayed choice on pom-
set families that, similar to the process-algebraic approach, contain all pos-
sible future behaviors of pomset-family members. This semantics is used as
a reference model for all other semantics in this paper.

(2) Prefix transition systems interpret delayed choice based on the past be-
haviors of the pomset family members. They are deterministic and bisimilar
to the corresponding suffix transition system (1).

The purpose of suffix transition systems (1) is to closely follow the process-
algebraic approach for defining delayed-choice semantics in the context of pomset
families. Prefix transition systems (2) complete the picture of our approach and
extend the delayed-choice semantics for MSGs provided in [8] towards arbitrary
pomset families. This semantics thus provides the connection of the semantics
defined throughout this paper to the approach by [8]. Every MSG naturally
induces a pomset family where each member is an MSC. Thus, suffix and prefix
transition systems also provide delayed-choice semantics for MSGs.

We furthermore present a non-interleaving branching-time semantics for pom-
set families in terms of a prime event structure [29]:

(3) Pomset event structures maintain the causality information between the
events in the pomset family members. For pomsets generated by MSGs, the
transition system induced by the pomset event structure is isomorphic to
the corresponding prefix transition system (2).

As far as we know, pomset event structures (3) provide the first non-interleaving
branching-time semantics for MSGs that follows the concept of delayed choice.

As intended by the authors of [33], it is quite natural that the weak sequential
composition operator corresponds to the local concatenation of pomsets in our
setting, not requiring the sophisticated definition of the permission relation that
imposes difficulties within recursion. We show that the process-algebraic delayed-
choice operator corresponds to the standard union operation in the setting of
pomset families.

Further related work. The process-algebraic approach for the standard op-
erational semantics for MSGs [24,17,23,31] uses interleaved models of MSCs as

2. PRELIMINARIES 5

basic building blocks. Based on these process terms for MSCs, sophisticated op-
erators of weak sequential composition and delayed choice are used to mimic the
linear-time behavior of MSGs in the branching-time setting. This is in contrast
to our approach, where we use the pomset semantics for MSCs as basic build-
ing blocks and exploit standard linear-time operators before interleaving pomset
families towards a branching-time semantics.

Besides using the process-algebraic approach, a transition-system semantics
for MSGs has been presented in [7] also based on the pomset semantics for
MSGs but not obeying delayed choice in the sense as we establish in this paper.
In particular, the transition system of [7] is not deterministic. Most related to
our pomset event structure (3) is the prime-event-structure semantics for MSGs
presented in [12]. However, their recursive definition employs the standard choice
operator instead of delayed choice, inducing a transition-system semantics that
is non-deterministic and infinitely branching. Further branching-time semantics
not following the concept of delayed choice have been presented as graphs with
synchronization points [21], or Petri-net components [14].

In order to reason about quantitative aspects of MSGs, our previous work
in [8] presented a transition-system semantics for MSGs that essentially corre-
sponds to the prefix transition-system semantics (cf. (2) above).

2 Preliminaries

In this section, we recall basic concepts of models for concurrency, communica-
tion systems and notations used throughout this paper. By N we denote the set
of non-negative integers. For any set X, we denote by 2X the power set of X.

2.1 Models for concurrency

The models we use throughout this paper mainly follow the taxonomy detailed
in the introduction (cf., e.g., [34]), comprising linear-time models in terms of
formal languages (interleaving) and pomsets (non-interleaving), and branching-
time models in terms of transition systems (interleaving) and event structures
(non-interleaving). Furthermore, we follow the principle of atomic actions, i.e.,
tasks of the system indivisible on the abstraction level of the model, where we
denote by Σ the alphabet of all actions. Instances of actions are events from a
set E that are labeled by its corresponding action name via a labeling function
λ : E Ñ Σ.

Formal languages. We denote by Σ‹ and Σ` the set of all finite and non-
empty finite words over Σ, respectively. By ε we denote the empty word. A
language over Σ is a subset of Σ‹. By wris we denote the pi`1q-st symbol of a
word w and by |w| the length of w.

Pomsets. A labeled partial order is a tuple P “ pE,ď, λq, where ď is a partial
order over a set of events E and λ : E Ñ Σ is the labeling function. We identify
isomorphic labeled partial orders, i.e., we treat them as pomsets [30]. We call a

6 Clemens Dubslaff and Christel Baier

pomset basic if λ is injective and finite if E is a finite set. If not stated differently,
we assume any pomset to be finite. Furthermore, we restrict ourselves to pomsets
that are not autoconcurrent, i.e., for all e, e1 P E with λpeq “ λpe1q we have
either e ď e1 or e ě e1. The empty pomset is denoted by m. The set of pomsets
over Σ is denoted by POΣ . A linearization of P is a word w P Σ‹ for which
there is a bijection ξ : t0, ..., |w|´1u Ñ E with λ

`

ξpiq
˘

“ wris and ξpiq ­ą ξpjq

for all i ď j ă |w|. P is total if for all e, e1 P E with e ‰ e1 we have either
e ă e1 or e ą e1. With abuse of notations, we identify total orders with their
linearization. For a set of events F , we denote by P|F the projection of P onto
F , i.e., the pomset pEXF,ďF , λF q, where e ďF e1 iff e, e1 P EXF and e ď e1,
and where λF peq “ α iff e P FXE and λpeq “ α. The upward closure on F
is defined as ÒF “ te P E : De1 P F.e ě e1u. A pomset P 1 for which there is
an upward closed F with P 1 “ P|F is called suffix of P. P 1 is an α-suffix of
P if furthermore EzF“teu with λpeq “ α. The set of all (α-) suffixes of P is
denoted by SuffpPq (SuffαpPq, respectively). Accordingly, we define the notions
of downward closure ÓF , and prefixes PrefpPq and PrefαpPq. A pomset family
is a set of pomsets, where we denote the set of all pomset families over Σ by
POFΣ “ 2POΣ . Notations for pomsets defined above extend to pomset families
P P POFΣ as expected, e.g., for some α P Σ, SuffαpPq “

Ť

PPP SuffαpPq. The
notion of α-suffixes is generalized to pomset families SuffwpPq of w-suffixes of
P for w P Σ‹ by defining SuffεpPq “ P and SuffwαpPq “ Suffα

`

SuffwpPq
˘

, for
w P Σ‹, α P Σ.

Transition systems. A transition system over an alphabet Σ is a tuple T “

pS, ι,ÝÑ,Termq where S is a countable set of states, ι P S an initial state,
ÝÑ Ď SˆΣˆS a transition relation, and Term Ď S a set of termination states.
A path for a word w “ α0α1 ¨ ¨ ¨αn´1 is a sequence π “ s0α0s1α1 . . . αn´1sn,
where s0 “ ι and si

αi
ÝÑ si`1 for all i ă n. π is an execution for w if sn P Term.

T is finite if its reachable part ts P S : ι ÝÑ‹ su is finite. T is deterministic if
for all s, t, t1 P S reachable in T and α P Σ with s

α
ÝÑ t and s

α
ÝÑ t1 we have

t “ t1. The set of all transition systems over Σ is denoted by TSΣ .

Event structures. As a branching-time non-interleaving model we rely on (la-
beled) prime event structures [29] and amend a notion of termination. A prime
event structure is a tuple E “ pE,ď, λ,#q that extends a possibly infinite pom-
set pE,ď, λq with an irreflexive and symmetric conflict relation # Ď EˆE such
that the following conditions hold:

(principle of finite causes) Óe is finite for all e P E, and
(conflict heredity) e#e1 and e1 ď e2 implies e#e2 for all e, e1, e2 P E.

A configuration of E is a finite subset of events C Ď E that is

downward-closed, i.e., ÓC “ C, and
conflict-free, i.e., for all e, e1 P C we never have e#e1.

The set of configurations of E is denoted by ConfpEq. A prime event structure
with termination is a pair pE ,Termq, where E is a prime event structure and
Term Ď ConfpEq is a set of termination configurations. To simplify notations,

2. PRELIMINARIES 7

we use the notion of an event structure instead of “prime event structure with
termination”. We denote the set of all event structures over Σ by ESΣ .

2.2 Relations between models for concurrency

Following [34], we introduce mappings between the models of the last section:

– ts : ESΣ Ñ TSΣ is the function that assigns the transition system tspEq “
`

ConfpEq,H,ÝÑ,Term
˘

to an event structure E “ pE,ď, λ,#,Termq, where

C
α

ÝÑ D iff D “ C Y teu for some e P E with λpeq “ α.
– pof : ESΣ Ñ POFΣ is the function that assigns the pomset family pofpEq “

␣

pC,ď|C , λ|Cq : C P Term
(

to an event structure E “ pE,ď, λ,#,Termq.
– lang : TSΣ ÑΣ‹ is the function that assigns the language langpT q to a tran-

sition system T comprising all words for which there is an execution in T .
– lang : POFΣ Ñ Σ‹ is the function that assigns the language langpPq “

Ť

PPP LinpPq to a pomset family P, where LinpPq denotes the set of lin-

earizations of P.2

It is well known that these functions commute, i.e., for any event structure E we
have lang

`

tspEq
˘

“ lang
`

pofpEq
˘

.

Bisimulation. Bisimilarity is a central concept to compare the behavior of
branching-time models [25]. A bisimulation between two transition systems T “

pS, ι,ÝÑ,Termq and T 1 “ pS1, ι1,ÝÑ1,Term1
q is a binary relation ” Ď S ˆ S1

where ι ” ι1,

(a) for all s P Term there is an s1 P Term1 with s ” s1, and
(a1) for all s1 P Term1 there is an s P Term with s ” s1,

and where for all s P S and s1 P S1 with s ” s1 we have that

(b) for all t P S with s
α

ÝÑ t there is a t1 P S1 with s1 α
ÝÑ1 t1 and t ” t1, and

(b1) for all t1 P S1 with s1 α
ÝÑ1 t1 there is a t P S with s

α
ÝÑ t and t ” t1.

If there exists a bisimulation between T and T 1, then T and T 1 are called
bisimilar. A bisimulation for T is a bisimulation ” between T and T . We shall
often use the well-known fact that bisimilarity coincides with trace equivalence
for deterministic transition systems.

Lemma 1. If T and T 1 are deterministic transition systems, then T and T 1

are bisimilar iff langpT q “ langpT 1q.

2.3 Modeling communication systems

Let P denote a finite set of processes and let Λ be a finite alphabet of data labels.
To model communication between processes, we consider a special instance of
the alphabet Σ. That is, we consider the set of communication actions Act “

2 Note that we overload the function lang for transition systems and pomset families.

8 Clemens Dubslaff and Christel Baier

Ť

pPP Actp, where Actp comprises all actions a process p P P may perform,
i.e., send actions p!qpmq (process p sends a message m to process q), receive
actions p?qpmq (p receives m from q), and local actions pplq (p performs a local
action l), for processes q P P , and data labels m, l P Λ. Events are instances of
actions collected in a set E to which we assign actions by a labeling function
λ : E Ñ Act . Given a set of events F Ď E, we denote by F! the set of send events,
i.e., F! “ te P F : Dp, q P P,m P Λ.λpeq “ p!qpmqu, and by F? the set of receive
events, i.e., F? “ te P F : Dp, q P P,m P Λ.λpeq “ p?qpmqu. Furthermore, for a
process p P P and pomset P “ pF,ď, λq, we define Fp “ te P F : λpeq P Actpu.

Message sequence charts. The ITU-T standard [15] introduced message se-
quence charts (MSCs) as visual formalism for communication scenarios. Here,
we recall the definition of MSCs based on pomsets [20].

Definition 1. An MSC is a pomset M “ pE,ď, λq for which M|p is total for

each p P P and where ď “
`

ăµ Y
Ť

pPP ď|Ep

˘‹
. Here, ăµ“

␣

pe, µpeqq : e P E!

(

denotes the binary relation defined for a bijection µ : E! Ñ E? with λpeq “ p!qpmq

and λpµpeqq “ q?ppmq for all e P E!.

The mapping µ in the above definition guarantees that the action labels are
compatible with the interpretation of send and receive events, i.e., matches every
receive event with a corresponding send event. The requirement that the events
of a process are totally ordered formalizes the time-line ordering. We denote by
MSC the set of all MSCs and by bMSC the set of all basic MSCs, i.e., MSCs
pE,ď, λq where λ is injective.

Example 2. Let us return to the introductory Example 1 that models a simple
set of communication scenarios over processes P “ ts, ru. The MSC depicted
on the left-hand side models a scenario with some timeout event, formalized
by Mt “ pEt,ďt, λtq with Et “ t!, ?, tou, ďt “ tp!, ?q, p!, toqu, and λtp!q “

s!rpdataq, λtp?q “ r?spdataq, and λtptoq “ sptoq. Likewise, we formalize the
MSC on the right-hand side by Ma “ pEa,ďa, λaq, where Ea “ t!d, ?d, !a, ?au,
ďa “

␣

p!d, ?dq, p!a, ?aq, p?d, !aq
(‹
, and where λa is given by λap!dq “ s!rpdataq,

λap?dq “ r?spdataq, λap!aq “ r!spackq, and λap?aq “ s?rpackq. Note that both
MSCs are basic.

Composition. Pomsets over Act are composed by performing a local concate-
nation where events of the same process depend on each other [30]. Formally,
we define d : POActˆPOAct Ñ POAct as follows: Let X “ pX,ďX , λXq and
Y “ pY,ďY , λY q be pomsets over Act with X X Y “ H. Then, XdY is defined
as the smallest pomset Z “ pZ,ď, λq where Z “ XYY , ď|X “ ďX , ď|Y “ ďY ,
and where for all p P P , e P Xp, e

1 P Yp we have e ď e1. The composition opera-
tion is extended to sequences of pomsets by d : PO‹

Act Ñ POAct , where dε “ m

and dpπPq “ pdπq d P for any π P PO‹
Act and P P POAct . For a language over

pomset sequences L Ď PO‹
Act , we define dL “ tdπ : π P Lu.

In case the pomsets to be composed are MSCs, it is easy to see that composi-
tion again yields an MSC. Intuitively, composing MSCs corresponds to “gluing”
their process lines together.

3. TRANSITION SYSTEMS FOR POMSET FAMILIES 9

Message sequence graphs. Whereas MSCs model single communication sce-
narios, message sequence graphs (MSGs) were introduced in [16] as the standard
higher-order formalism to specify collections of communication scenarios, i.e.,
sets of MSCs.

Definition 2. An MSG is a tuple G “ pB, b0, ãÑ, βq, where B is a finite set of
boxes, b0 P B an initial box, ãÑ Ď BˆB a transition relation, and β : B Ñ bMSC
a labeling function that assigns basic MSCs to boxes.

Note that we allow β for assigning the empty MSCs m to some box. We extend β
towards β : B‹ Ñ MSC by inductively defining βpεq “ m and βpπbq “ βpπqdβpbq
for π P B‹ and b P B. A box sequence π “ b0b1 . . . bn P B‹ is called a path in G if
bi ãÑ bi`1 for all i ă n. If π cannot be prolonged in G, i.e., there is no b P B such
that bn ãÑ b, we call π an execution of G and define by BrGs the box language of
G as the set of executions of G. In the following, we assume that any path in G
can be prolonged towards an execution of G. An MSC M is accepted by G if M
arises from a composition along an execution of G. The pomset semantics of G
is the set of all MSCs accepted by G, denoted by PrGs “ β

`

BrGs
˘

.

Example 3. The the MSG Gbsp from Example 1 is formalized by

Gbsp “
`

tι, t, au, ι, tpι, tq, pι, aq, pt, tq, pt, aqu, β
˘

with βpιq “ m, βptq “ Mt, and βpaq “ Ma where Mt and Ma are the MSCs
defined as in Example 2. The set of paths in Gbsp is the regular language given
by the regular expression ε` ιt‹pa`εq. The box language BrGbsps is given by the
regular expression ιt‹a. The communication scenario arising from the execution
ιta P BrGbsps is the MSC pE,ď, λq “ βpιq d βptq d βpaq “ Mt d Ma, i.e.,

E “ EtYEa, ď “
`

ďt Y ďa Y tpto, !dq, p?, ?dqu
˘‹
, and λ “ λt Y λa.

3 Transition systems for pomset families

In this section, we present transition systems for pomset families that follow
the concept of delayed choice. For this, let us fix an alphabet of actions Σ.
Although we do not consider process algebras in detail here, let us support the
intuition behind delayed choice operator ¯ by providing the process-algebraic
rules of [3], where ¯ has been defined first. A process term stands for a possible
future behavior of the system, where reductions on the terms are made through
firing actions. The operational semantics of ¯ is provided by the rules (DC1),
(DC2), (DC3), and symmetric rules with exchanged roles for process terms x
and y (and process terms x1 and y1, respectively). In these rules, x

α
Ñ y stands

termpxq
(DC1)

termpx ¯ yq

x
α
Ñ x1 y

α
Û

(DC2)
px ¯ yq

α
Ñ x1

x
α
Ñ x1 y

α
Ñ y1

(DC3)
px ¯ yq

α
Ñ px1

¯ y1
q

for an execution of an action α P Σ in x, x
α
Û expresses that action α is not

10 Clemens Dubslaff and Christel Baier

executed by x, and termpxq stands for x having the option to terminate. Hence,
(DC1) states that x¯y can terminate if x can. The other rules illustrate exactly
the intuitive behavior of delayed choice: the choice between two process terms
x and y is not resolved when they perform the same actions (cf., (DC3)), but
when from x an action is performed that is not enabled in y (cf., (DC2)).

Operational semantics for pomset families. To specify the operational
behavior of systems described by some pomset family P, a central aspect is to
identify the global state of the system and to describe the step-wise behavior
from each of the states. For a single pomset P “ pE,ď, λq, a global state is
traditionally defined by a cut, i.e., a partition of the events E into past events
U and future events V “ EzU . Thus, every cut of P can be specified by either
the set of past events U or future events V – the respective other set of events
follows from the fixed set of events E. From a cut, action α can be performed
when there is a minimal future event e P V labeled by α. After performing α,
the event e from the set of future events V is moved to the set of past events U .

Having the interpretation of delayed choice in mind, where process terms
describe future behaviors, we may describe cuts by their future events and amend
the partial order and labeling inherited from the given pomset. This yields a
formalization of the stepwise behavior

α
ô of executing an action α over (future)

pomsets Y P POΣ by Y α
ô SuffαpYq.3 The principle of the operational behavior

for single pomsets can be generalized towards pomset families by ô Ď POFΣ ˆ

ΣˆPOFΣ , where the standard union on pomset families serves as delayed choice
within the step-wise behavior ô described above. That is, for a pomset family
X P POFΣ , we have X

α
ô Y iff Y “ SuffαpXq. It is easy to check that the

rules for delayed choice specified for process algebra terms are fulfilled by ô (cf.

(DC2) and (DC3)), replacing
α
Ñ by

α
ô and using pomset families instead of

process terms. Here, X
α
ôX denotes that SuffαpXq “ H. Furthermore, the empty

pomset m P X naturally serves as candidate for termpXq (cf. (DC1)).
Formalizing the approach with the step-wise operational behavior for pomset

families described above, we obtain suffix transition systems where cuts of the
pomset family members are represented by the pomset of future events. To
complete the picture, we further present prefix transition systems for pomset
families where cuts are represented by pomsets of past events.

For the remainder of this section, let us fix a pomset family P P POFΣ .

3.1 Suffix transition systems

Definition 3. The suffix transition system of P is given by

Tsuff rPs “
`

2SuffpPq,P,ô,T
˘

where T “ tX Ď SuffpPq : m P Xu, and where for X,Y Ď SuffpPq we have

X
α
ô Y iff Y “ SuffαpXq.

3 Note that SuffαpYq is a singleton as we assume pomsets to be not autoconcurrent.

3. TRANSITION SYSTEMS FOR POMSET FAMILIES 11

Note that states of the suffix transition system of P might be an infinite pomset
family in case P is infinite.

Example 4. Let us return to our running example, i.e., let us consider the MSG
Gbsp from Example 3. By the definition of the pomset semantics for MSGs, we
have PrGbsps “ tMt d . . . d Mt d Mau. For illustration purposes, we extend
the definition of d towards pomset families by X dY “ tX dY : Y P Yu. Using
this abbreviation and with P “ PrGbsps, Figure 2 shows a fragment of the suffix
transition system Tsuff rPs with initial state P and one termination state tmu.
Tsuff rPs contains cycles and is infinite since for all k P N the pomset family

Mt|t?u d . . . d Mt|t?u
looooooooooooomooooooooooooon

k times

d
`

pMt|t?,tou d Pq Y tMa|t?d,!a,?auu
˘

is a reachable state in Tsuff rPs.

P

Mt|{?,to} � P [{Ma|{?d,!a,?a}}

Mt|{?} � P

Mt|{to} � P [{Ma|{!a,?a}}

s!r(data)

r?s(data)
s(to)

s(to)

r?s(data)

{Ma|{?a}}r!s(ack) s?r(ack) {↵}

Mt|{?} �
�
Mt|{?,to} � P [{Ma|{?d,!a,?a}}

�s!r(data)
r?s(data)

Mt|{?,to} � P [{Ma|{?d,!a,?a}}
r?s(data)

...s(to)

...
s(to)

Fig. 2. Fragment of the suffix transition system for PrGbsps

Proposition 1 (Properties of Tsuff rPs). Given P P POFΣ,

(a) Tsuff rPs is deterministic, and
(b) lang

`

Tsuff rPs
˘

“ langpPq.

Proof. It is easy to see by the definition of Suffαp¨q that Tsuff rPs is deterministic4.
Let us now show language equality of Tsuff rPs and P:

(ñ) Let w P lang
`

Tsuff rPs
˘

, i.e., there is an execution X0α0X1α1 . . . αn´1Xn

of Tsuff rPs with X0 “ P, Xn P T and w “ α0α1 . . . αn´1. Then, by the
definition of T, m P Xn. Furthermore, by the definition of Suffαp¨q, there is
a P P X0 such that for all i ă n there is Pi P Xi with P0 “ P, Pn “ m and
Pi`1 “ SuffαipPiq. We show that w is a linearization of P0 “ pE,ď, λq, i.e.,
there is a bijection ξ : t0, . . . , n´1u Ñ E with λ

`

ξpiq
˘

“ αi and ξpiq ­ą ξpjq

for all i ď j ă n. For i ă n, let ξpiq be the uniquely defined event in
PizPi`1. Then, since Pi`1 “ Suffαi

pPiq, λ
`

ξpiq
˘

“ αi for all i ă n. Towards
a contradiction, assume that there are i ď j such that ξpiq ą ξpjq. Then,
by the definition of suffixes, Pj is upward closed and thus, ξpiq P Pj . Hence,
by the definition of Suffαp¨q, for all k ě i we have ξpiq P Pk, which yields
ξpiq R PizPi`1, contradicting the definition of ξ.

4 Recall that determinism depends only on the reachable part in Tsuff rPs.

12 Clemens Dubslaff and Christel Baier

(ð) Let w P langpPq, i.e., there is some P P P such that w P LinpPq. With w “

α0α1 . . . αn´1 and P “ pE,ď, λq there is thus a bijection ξ : t0, . . . , n´1u Ñ

E with λ
`

ξpiq
˘

“ αi and ξpiq ­ą ξpjq for all i ď j ă n. Let Pi for i ď n
be inductively defined by P0 “ P and Pi`1 “ Piztξpiqu. Then for all i ă n
we have that ξpiq is a minimal event in Pi and thus, by the definition of
suffixes, Pi`1 “ Suffαi

pPiq. Thus, there is a path π “ X0α0X1α1 . . . αn´1Xn

in Tsuff rPs with X0 “ P and where Pi P Xi for all i ď n. As m “ Pn, we
have that m P Xn and hence, π is an execution in Tsuff rPs. This directly
yields w P lang

`

Tsuff rPs
˘

. [\

Motivated by the last proposition and the fact that the step-wise behavior and
the termination states satisfy the rules for delayed choice on suffix pomset fami-
lies as illustrated in the introductory argumentation of this section, we use suffix
transition systems as a reference model for delayed-choice semantics on pomset
families.

Definition 4. A transition system T for a pomset family P obeys delayed
choice if T is deterministic and bisimilar to Tsuff rPs.

3.2 Prefix transition systems

We now define prefix transition systems, where states are given by prefixes of a
pomset family. Intuitively, any prefix stands for the partially ordered history of
an execution of the system. Prefix transition systems generalize the transition-
system semantics for MSGs of [8] towards arbitrary pomset families (possibly
not generated by MSGs).

Definition 5. The prefix transition system semantics of P is given by

Tpref rPs “
`

2PrefpPq, tmu,ñ,T
˘

,

where T “ tX Ď PrefpPq : X X P ‰ Hu and where for X,Y Ď PrefpPq we have

X
α
ñ Y iff X “ PrefαpYq.

Example 5. In Figure 3, a fragment of the prefix transition system Tpref
“

PrGbsps
‰

is depicted where Gbsp is as in Example 3. Note that in this example, every
reachable pomset family is a singleton.

Proposition 2 (Properties of Tpref rPs). Given P P POFΣ,

(a) Tpref rPs is acyclic,
(b) Tpref rPs is deterministic, and
(c) lang

`

Tpref rPs
˘

“ langpPq.

Proof. In order to show that Tpref rPs is acyclic, we rely on the fact that for all
X Ď PrefpPq reachable in Tpref rPs we have that X ,Y P X implies |X | “ |Y|. Let
now #pXq denote the number of events contained in each X P X. Then, for all

reachable X,Y Ď PrefpPq with X
α
ñ Y we have #pYq “ #pXq`1. Thus, Tpref rPs

is acyclic. For any Y Ď PrefpPq and α P Σ, X “ PrefαpYq is uniquely defined

and by the definition of
α
ñ, we directly obtain that Tpref rPs is deterministic. Let

us now show language equality of Tpref rPs and P:

3. TRANSITION SYSTEMS FOR POMSET FAMILIES 13

{↵}

{Mt|{!}}

{Mt|{!,to}}

{Mt|{!,?}}

s!r(data)

r?s(data)

s(to)

s(to)

{Mt|{!,to} � Mt|{!}}

r!s(ack) s?r(ack)

{Mt}

s!r(data)

{Ma|{!d,?d,!a}}

r?s(data)

s(to)

Ma

{Mt � Mt|{!}}

r?s(data)

s!r(data)

{Mt|{!,to} � Mt|{!,to}}

s(to)

r?s(data)

{Mt � Mt|{!,to}}

...

s!r(data)

...

r?s(data)r?s(data)
...

Fig. 3. Fragment of the prefix transition system for PrGbsps

(ñ) Let w P langpTpref rPsq, i.e., there is an execution X0α0X1α1 . . . αn´1Xn

of Tpref rPs with X0 “ tmu, Xn P T and w “ α0α1 . . . αn´1. Then, by the
definition of T, there is some Pn “ pE,ď, λq P Xn such that Pn P P.
Furthermore, by the definition of Prefαp¨q, for all i ă n there is Pi P Xi

with Pi “ Prefαi
pPi`1q. We show that w is a linearization of P, i.e., there

is a bijection ξ : t0, . . . , n´1u Ñ E with λpξpiqq “ αi and ξpiq ­ą ξpjq for all
i ď j ă n. For i ă n, let ξpiq be the uniquely defined event in Pi`1zPi. Then,
since Pi “ PrefαipPi`1q, λpξpiqq “ αi for all i ă n. Towards a contradiction,
assume that there are i ď j such that ξpiq ą ξpjq. Then, by the definition
of prefixes, Pi`1 is downward closed and thus, ξpjq P Pi`1. Hence, by the
definition of Prefαp¨q, for all k ą i we have ξpjq P Pk, which yields ξpjq R

Pj`1zPj , contradicting the definition of ξ.
(ð) Let w P langpPq, i.e., there is some P P P such that w P LinpPq. With w “

α0α1 . . . αn´1 and P “ pE,ď, λq there is thus a bijection ξ : t0, . . . , n´1u Ñ

E with λpξpiqq “ αi and ξpiq ­ą ξpjq for all i ď j ă n. Let Ei for i ď n
be inductively defined by E “ H and Ei`1 “ Ei Y tξpiqu. Furthermore, let
Pi “ P|Ei

for all i ď n. Since ξpiq ­ą ξpjq for all i ď j ă n, all Pi are
downward closed and thus, by the definition of prefixes, Pi “ Prefαi

pPi`1q.
Thus, there is a path π “ X0α0X1α1 . . . αn´1Xn in Tpref rPs with X0 “ tmu

and where Pi P Xi for all i ď n. As Pn “ P, we have that P P Xn and
hence, Xn X P ‰ H. Thus, π is an execution in Tpref rPs and hence, w P

lang
`

Tpref rPs
˘

. [\

The above proposition in combination with Proposition 1 and Lemma 1 directly
yields that Tpref rPs is a delayed-choice semantics for P:

Theorem 1. Tpref rPs obeys delayed choice, i.e., Tpref rPs is deterministic and
bisimilar to Tsuff rPs.

3.3 Comparison and discussion

To further illustrate the differences between suffix and prefix transition sys-
tems, let us consider a simple example issuing a pomset family P “ tX ,Yu

14 Clemens Dubslaff and Christel Baier

that comprises the pomsets X “
`

te, e1u, tpe, e1qu, tpe, αq, pe1, α1qu
˘

and Y “
`

te, e1u,H, tpe, αq, pe1, α1qu
˘

. Figure 4 depicts the resulting suffix and prefix tran-
sition systems for P. When executing α followed by α1, the choice between X
and Y is delayed, i.e., this execution could follow either X or Y. However, when
executing α1 first, the choice between X and Y is resolved towards Y. Whereas

{↵} �
Y|{e}

�
Y
 �

Y|{e0}

↵
�
X , Y

↵0 ↵

↵0

(1) (2)

{↵}

�
Y|{e}

�
Y|{e0}

↵

�
X , Y

 ↵0 ↵

↵0

Fig. 4. The (1) prefix and (2) suffix transition system for P “ tX ,Yu

in the case of the suffix transition system there is only one termination state, the
prefix transition system contains the history of the execution and has two termi-
nation states. Note that both transition systems contain states which comprise
more than one pomset.

Using the process algebra introduced in [17,31], we can describe P by the
process-algebraic term pα∥α1q¯pα¨α1q. Using the rules specified in [31], we obtain
the transition system depicted in (1) of Figure 5, which corresponds to the prefix
transition system for P. Identifying bisimilar process-algebraic terms using the
bisimulation Ø provided in [31] yields a transition system corresponding to the
suffix transition system for P, depicted in (2) of Figure 5.

("k↵0) ⌥ ("·↵0)

↵k"
↵

↵0 ↵

↵0

(1) (2)

"

↵

(↵k↵0) ⌥ (↵·↵0)
↵0 ↵

↵0

↵

↵0

(↵k↵0) ⌥ (↵·↵0) "k"

("k") ⌥ "

Fig. 5. Transition system of pα∥α1
q ¯ pα¨α1

q (1) and its quotient w.r.t. Ø (2)

Note that in contrast to the prefix transition system Tpref
“

PrGbsps
‰

detailed in
Example 5, Tpref rPs contains reachable states that are not singletons.

Lemma 2. For all MSGs G, the reachable states of Tpref
“

PrGs
‰

are singletons.

Proof. As Tpref
“

PrGs
‰

is deterministic (see Proposition 2b), every action se-
quence w P Act‹ for which there is a path yields a uniquely defined state that
we denote by Xw. Towards an induction on w, the statement holds for w “ ε as
then, Xw “ tmu. Let w be such that Xw “

␣

pE,ď, λq
(

. Consider an α P Actp

4. AN EVENT STRUCTURE FOR POMSET FAMILIES 15

for a process p P P such that there is an α-transition in Xw leading to Xwα. Let
X P Xwα with X “

`

EYteu,ďYpXˆteuq, λYtpe, αqu
˘

for X Ď E. This can be
assumed w.l.o.g. due to the definition of Prefαp¨q. If α is a local or send event,
then X “ ÓEpˆteu due to the definition of d and the fact that local and send
events have at most one direct predecessor in an MSC. Let α “ p?qpmq and k
denote the number of α-events in E. Since every receive event is mapped to a
send event in a basic MSC, this mapping takes over to MSCs in PrGs by the
definition of d. Thus, the kth event labeled by q!ppmq on the process line Eq is
a direct predecessor of e in X . Since every receive event has at most two direct
predecessors, we obtain X “ Óê Y ÓEp again by the definition of d. Hence, X is
uniquely defined through pE,ď, λq and α, leading to Xwα being a singleton. [\

4 An event structure for pomset families

In this section, we present a branching-time semantics for pomset families that
is non-interleaving, i.e., models causal dependencies and independence explicitly.
Throughout this section, we fix a pomset family P over Σ. Similar to concepts
of [32], we define an event structure for P where events are pomsets that arise
from the downward closure of an event in some pomset of P. More formally, for
a pomset P P P with P “ pF,ĺ, νq and e P F , we consider the pomset downward
closure of e as P|Óe with Óe “ te1 P F : e1 ĺ eu.

Definition 6. The pomset event structure ErPs is given by pE,ď, λ,#,Termq

where

– E “
␣

P|Óe : P “ pF,ĺ, νq P P, e P F
(

– X ď Y iff X P PrefpYq

– λpP|Óeq “ νpeq for P “ pF,ĺ, νq P P, e P F
– X#Y iff there is no P P P with X ,Y P PrefpPq

– X P Term iff there is P “ pF,ĺ, νq P P such that X “ tP|Óe : e P F u

To show that ErPs is well defined, we note that pE,ď, λq is a (possibly infinite)
pomset as the prefix relation on any pomset family is a partial order, and #
is clearly irreflexive and symmetric. Furthermore, the principle of finite causes
holds as P “ pF,ĺ, νq P P is finite and thus, PrefpP|Óeq is also finite for all e P F .
To show that conflict heredity holds, let X ,Y,Z P E and X#Y, Y ď Z and
assume that X#Z does not hold. Then, there is P P P such that X ,Z P PrefpPq.
By the definition of ď, Y P PrefpZq Ď PrefpPq, which contradicts X#Y as there
should be no Q P P with X ,Y P PrefpQq, violated by Q “ P. It is left to show
that Term Ď Conf

`

ErPs
˘

, which is a direct consequence of the following lemma.

Lemma 3. For all P “ pF,ĺ, νq P PrefpPq, C “
␣

P|Óe : e P F
(

, we have

C P Conf
`

ErPs
˘

and P “ pC,ď|C , λ|Cq.

Proof. Towards an induction on n “ |F |, the statement is clearly fulfilled for n “

0 by H P Conf
`

ErPs
˘

. Now, let |F | “ n`1 and assume that the statement holds

16 Clemens Dubslaff and Christel Baier

for all Q P PrefpPq with an event space containing n elements. In particular, for
all α P Σ with P 1 “ pF 1,ĺ|F 1 , ν|F 1 q P PrefαpPq there is an f P F with νpfq “ α
such that F zF 1 “ tfu. Since we assume pomsets to be not autoconcurrent, f is
uniquely defined if it exists. We first show that C “ C 1 Y tP|Ófu P Conf

`

ErPs
˘

with C 1 “ tP 1|Óe : e P F 1u. Since P P PrefpPq we have P|Óf P E. Furthermore,
C 1 P Conf

`

ErPs
˘

by induction hypothesis and thus C Ď E. C is conflict-free
with P as witness. Now assume that C is not downward-closed, i.e., there is
an X P EzC with X ď P|Óf . By the definition of ď we have X P PrefpP|Óf q.
Thus, there is an x P F with X “ P|Óx. If x ‰ f , then X P C 1 and if x “ f ,
then X “ P|Óf . Hence, X P C, contradicting X P EzC. Now we show that
P “ pC,ď |C , λ|Cq. By induction hypothesis, we have P 1 “ pC 1,ď |C1 , λ|C1 q.
Thus, it suffices to show that for all e P F we have e ĺ f iff P|Óe ď P|Óf :

(ñ) It follows directly that Óe Ď Óf and thus, P|Óe P PrefpP|Óf q.
(ð) From P|Óe P PrefpP|Óf q, we get Óe Ď Óf and thus, e1 ĺ f for all e1 P Óe. [\

4.1 Properties of pomset event structures

In the general case, pomset event structures do not induce a deterministic tran-
sition system such they do not obey delayed choice in the sense of Definition 4.
We illustrate this fact by the following example.

Example 6. Let us reconsider the example of Section 3.3. On the left of Figure 6,
the pomset event structure of tX ,Yu is depicted (1), where the arrow connects

Y|{e0}

Y|{e} X
? �

Y|{e}

�
Y|{e0}, Y|{e}

 �
Y|{e0}

↵
�
Y|{e}, X

↵0 ↵

↵0

(1) (2)

↵0

Fig. 6. E
“

tX ,Yu
‰

(1) and induced transition system ts
`

ErtX ,Yus
˘

(2)

causal dependent events and the dashed line conflicting ones. On the right of
Figure 6, the induced transition system is shown (2). Note that this transition
system is non-deterministic in the configuration

␣

Y|teu

(

.

We now present a further lemma that intuitively provides the backward direction
of Lemma 3:

Lemma 4. For all C P Conf
`

ErPs
˘

we have pC,ď|C , λ|Cq P PrefpPq.

Proof. Since C is conflict-free there is a P “ pF,ĺ, νq P PrefpPq such that
X P PrefpPq for all X P C. Thus, there is a function ξ : C Ñ F such that for
all X P C we have X “ P|ÓξpX q. Clearly, ξ is injective and it is left to show
that P|ξpCq “ pC,ď|C , λ|Cq. We do so by showing that for all X ,Y P C we have
ξpX q ĺ ξpYq iff X ď Y:

4. AN EVENT STRUCTURE FOR POMSET FAMILIES 17

(ñ) From ÓξpX q Ď ÓξpYq, we get P|ξpX q P PrefpP|ξpYqq and hence, X P PrefpYq.
(ð) As X P PrefpYq, we have P|ξpX q P PrefpP|ξpYqq and thus, ÓξpX q Ď ÓξpYq.

Hence, for all e1 P ÓξpX q we get e1 ĺ ξpYq and in particular ξpX q ĺ ξpYq. [\

Mainly relying on Lemma 3 and the Lemma 4 above, we show compatibility of
ErPs with its generating pomset P:

Theorem 2 (Compatibility Theorem). pof
`

ErPs
˘

“ P.

Proof. (Ď) For all P P pof
`

ErPs
˘

there is some C P Term with P “ pC,ď

|C , λ|Cq. By Lemma 4 we have P P PrefpPq and due to the definition of
Term in ErPs, we finally obtain P P P.

(Ě) Let P “ pF,ĺ, νq P P and C “ tP|Óe : e P F u. Then, due to Lemma 3,
P “ pC,ď |C , λ|Cq and C P Term. Thus, by the definition of pof, we get
P P pof

`

ErPs
˘

. [\

4.2 Pomset event structures for MSGs

As any MSG G induces a pomset semantics PrGs, an event structure semantics
for G is naturally defined through E

“

PrGs
‰

.

Example 7. Let us consider the running example with the MSG Gbsp from Exam-
ple 3 and denote its event structure by E

“

PrGbsps
‰

“ pE,ď, λ,#,Termq. Figure 7

shows a fragment of E
“

PrGbsps
‰

. Arrows indicate direct successors, i.e., e Ñ e1

iff e ă e1 and there is no e2 P E with e ă e2 ă e1. Dashed lines connect minimal
conflicting events, i.e., e --- e1 iff e#e1 and there is no e2 P E with e#e2 ă e1

or e1#e2 ă e. All other conflicting events can be derived from these minimal
conflicting events through conflict heredity. Note that, e.g., the event Ma has

Mt|{!}

Mt|{!,to}

Mt|{!,?}

Mt|{!,to} � Mt|{!}

Ma|{!d,?d,!a} Ma

Mt � Ma|{!d,?d,!a}

Mt|{!,to} � Mt|{!,to}

Mt � Mt|{!,?}

...

...

Fig. 7. Fragment of the event structure for PrGbsps

no successor and is in conflict with every event of the upper branch of Figure 7.
Thus, the configuration C “ tMt|t!u,Mt|t!,?u,Ma|t!d,?d,!au,Mau is maximal in
the sense that it cannot be extended by any other event. Furthermore, C P Term
as Ma P P.

Note that the basis for our construction in Definition 6 is provided by pomset
downward closures, which in the setting of MSGs correspond to p-views for
processes p P P [13]. Although the transition system induced by a pomset event
structure does neither need to be deterministic nor bisimilar to the corresponding
suffix transition system (see Example 6), it obeys delayed choice in the setting
of MSGs:

18 Clemens Dubslaff and Christel Baier

Theorem 3. Let G be an MSG. Then, ts
`

ErPrGss
˘

is isomorphic to Tpref
“

PrGs
‰

.

Proof. Let us denote E
“

PrGs
‰

by E “ pE,ď, λ,#,Termq and the transition re-

lation of tspEq by ÝÑ. Furthermore, let Tpref
“

PrGs
‰

“
`

S, tmu,ñ,T
˘

. Lemma 4
induces a mapping ξ : ConfpEq Ñ PrefpPrGsq by ξpCq “ pC,ď|C , λ|Cq for all
C P ConfpEq. Due to Lemma 3, ξ is bijective. Since every reachable state X in
Tpref

“

PrGs
‰

is a singleton (see Lemma 2), it suffices to show that for all α P Act

and C,D P ConfpEq we have C
α

ÝÑ D iff
␣

ξpCq
(α

ñ
␣

ξpDq
(

.

(ñ) For C
α

ÝÑ D there is an event e P E such that D “ C Y teu and λpeq “ α.
By the definition of prefixes and the fact that we only consider pomsets that
are not autoconcurrent, we thus obtain

␣

pC,ď |C , λ|Cq
(

“ Prefα
`

tpD,ď

|D, λ|Dqu
˘

. Hence,
␣

ξpCq
(α

ñ
␣

ξpDq
(

.

(ð) Let
␣

ξpCq
(α

ñ
␣

ξpDq
(

. Then
␣

pC,ď|C , λ|Cq
(

“ Prefα
`

tpD,ď|D, λ|Dqu
˘

and thus, there is an event e P D with λpeq “ α such that pC,ď|C , λ|Cq “
`

Dzteu,ď|Dzteu, λ|Dzteu

˘

. By Lemma 3 we obtain C “ Dzteu and hence, the

definition of tsp¨q yields C
α

ÝÑ D.

It is left to show that C P Term iff
␣

ξpCq
(

P T. Due to Theorem 2, we have

C P Term iff ξpCq P PrGs. By the definition of Tpref
“

PrGs
‰

and Lemma 2,
tX u P T iff X P PrGs. The statement follows directly since ξ is a bijection. [\

As a direct consequence of the above theorem and Theorem 1, we obtain
that E

“

PrGs
‰

can be seen as a delayed-choice semantics for G. Thus, our defini-
tion of pomset event structures covers the first non-interleaving branching-time
semantics for MSGs that follows the delayed-choice principle.

Corollary 1. ts
`

ErPs
˘

obeys delayed choice, i.e., ts
`

ErPs
˘

is deterministic and
bisimilar to Tsuff rPs.

5 Conclusion

The main contribution of this paper is that we provided a semantical frame-
work of branching-time semantics for pomset families and MSGs following the
delayed-choice principle. In contrast to the original definition of delayed choice
based on process algebras, we circumvented the intrinsic linear-time operators
in terms of delayed choice [3] and weak sequential composition [33] by operating
directly on pomset families. Within this approach, delayed choice corresponds
to the standard union operation on pomset families that arise from removing
minimal events of pomset family members, and weak sequential composition cor-
responds to local concatenation of pomsets [30] (as intended by [33]). We thus
avoid difficulties within the definition of the standard operational semantics for
MSG [17,31] that require fixed points over operator-defining rules with negative
premises. As a reference semantics, we defined suffix transition systems, which
closely follow the process-algebraic approach in the sense that states represent
future behaviors. The prefix transition-system semantics provides a connection

5. CONCLUSION 19

to the branching-time semantics defined in [8], where quantitative aspects for
MSGs have been investigated. Whereas previously presented event-structure se-
mantics for MSGs [12] do not follow the delayed-choice principle, we constructed
an event structure that is consistent with our transition-system semantics, i.e.,
those transition system is deterministic and bisimilar to our reference semantics.

We illustrated that our event structure semantics follows the delayed-choice
principle by referring to its induced transition system. It naturally arises the
question whether there is a reasonable definition of delayed choice directly on
event structures, possibly relying on deterministic event structures [32]. This
question and the problem of defining an event structure obeying delayed choice
for arbitrary pomset families is left for further work. Towards an application of
our semantical framework, extending Lotos [6] with a delayed-choice operator
could enable reasoning about delayed-choice semantics for pomsets and MSGs.

Acknowledgements. The authors thank Arend Rensink and Joost-Pieter Ka-
toen for their valuable comments on this paper.

References

1. R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence charts.
In Software Concepts and Tools, pages 304–313, 1996.

2. R. Alur and M. Yannakakis. Model checking of message sequence charts. In Proc.
of CONCUR’99, volume 1664 of LNCS, pages 114–129, 1999.

3. J. C. M. Baeten and S. Mauw. Delayed choice: an operator for joining message
sequence charts. In Proc. of FORTE’94, pages 340–354, 1994.

4. J. A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting.
The Computer Journal, 37(4):243, 1994.

5. B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-
passing systems. Logical Methods in Computer Science, 6(3), 2010.

6. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks, 14:25–59, 1987.

7. J. Chakraborty, D. D’Souza, and K. Narayan Kumar. Analysing Message Sequence
Graph Specifications, volume 6415 of LNCS, pages 549–563. Springer, 2010.

8. C. Dubslaff and C. Baier. Quantitative analysis of communication scenarios. In
Proc. of the 13th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS), volume 9268 of Lecture Notes in Computer Science,
pages 76–92. Springer, 2015.

9. B. Genest and A. Muscholl. Message sequence charts: A survey. In ACSD, pages
2–4, 2005.

10. J. F. Groote. Transition system specifications with negative premises. Theor.
Comput. Sci., 118(2):263–299, 1993.

11. O. M. Group. Unified modeling language (uml): Superstructure version 2.4.1.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/, August 2011.

12. L. Hélouët, C. Jard, and B. Caillaud. An event structure based semantics for
high-level message sequence charts. Math. Struct. in Comput. Sci., 12(4):377–402,
2002.

13. J. G. Henriksen, M. Mukund, K. N. Kumar, M. Sohoni, and P. S. Thiagarajan. A
theory of regular msc languages. Inf. Comput., 202:1–38, October 2005.

20 Clemens Dubslaff and Christel Baier

14. S. Heymer. A semantics for MSC based on Petri-net components. In In Proc. 2st
Workshop of the SDL Forum Society on SDL and MSC - SAM’2000, 2000.

15. ITU-T. Message Sequence Chart (MSC). Z.120 v1.0, 1993.
16. ITU-T. Message Sequence Chart (MSC). Z.120 v2.0, 1996.
17. ITU-T. Annex B: Formal semantics of Message Sequence Charts. Z.120 v2.2, 1998.
18. ITU-T. Message Sequence Chart (MSC). Z.120 v5.0, 2011.
19. J. Katoen and L. Lambert. Pomsets for message sequence charts. In 8. GI/ITG-

Fachgespraech, pages 197–207. Shaker Verlag, 1998.
20. V. Levin and D. Peled. Verification of message sequence charts via template match-

ing. In Proc. of TAPSOFT ’97, volume 1214 of LNCS, pages 652–666. Springer
Verlag, 1997.

21. P. Madhusudan. Reasoning about sequential and branching behaviours of message
sequence graphs. In Proc. of the 28th International Colloquium on Automata,
Languages and Programming, ICALP’01, volume 2076 of LNCS, pages 809–820.
Springer, 2001.

22. S. Mauw and M. Reniers. An algebraic semantics of basic message sequence charts.
The Computer Journal, 37:269–277, 1994.

23. S. Mauw and M. Reniers. Operational semantics for msc’96. Computer Networks,
31(17):1785 – 1799, 1999.

24. S. Mauw and M. A. Reniers. High-level message sequence charts. In SDL Forum,
pages 291–306, 1997.

25. R. Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

26. A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In Proc. of MFCS’99, LNCS 1672, pages 81–91. Springer,
1999.

27. A. Muscholl and D. Peled. Deciding properties of message sequence charts. In Sce-
narios: Models, Transformations and Tools, LNCS (3466). Springer Verlag, 2005.

28. A. Muscholl, D. Peled, and Z. Su. Deciding properties for message sequence charts.
In Proceedings of FoSSaCS’98, number 1378 in LNCS, pages 226–242, 1998.

29. M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains.
Theoretical Computer Science, 13(1):85 – 108, 1981.

30. V. Pratt. Modeling concurrency with partial orders. International Journal of
Parallel Programming, 15:33–71, 1986.

31. M. A. Reniers. Message Sequence Chart: Syntax and Semantics. PhD thesis,
Eindhoven University of Technology, June 1999.

32. A. Rensink. A complete theory of deterministic event structures. In CONCUR’95:
Proc. of the 6th International Conference on Concurrency Theory, Philadelphia,
PA, USA, 1995, pages 160–174, 1995.

33. A. Rensink and H. Wehrheim. Weak sequential composition in process algebras,
pages 226–241. Springer, Berlin, Heidelberg, 1994.

34. G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of logic in computer science
(vol. 4), pages 1–148. Oxford University Press, Oxford, UK, 1995.

	Delayed-choice semantics for pomset families and message sequence graphs[-.3em]Author's Version – August 9, 2017

