
Operational Causality – Necessarily Sufficient
and Sufficiently Necessary⋆

Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Jakob
Piribauer, and Robin Ziemek

Technische Universität Dresden, Dresden, Germany
{christel.baier, clemens.dubslaff, florian.funke, simon.jantsch,

jakob.piribauer, robin.ziemek}@tu-dresden.de

Abstract. Necessity and sufficiency are well-established notions in logic
and causality analysis, but have barely received attention in the formal
methods community. In this paper, we present temporal logic character-
izations of necessary and sufficient causes in terms of state sets in oper-
ational system models. We introduce degrees of necessity and sufficiency
as quality measures for sufficient and necessary causes, respectively, along
with a versatile weight-based approach to find “good causes”. The re-
sulting optimization problems of finding optimal causes are shown to be
solvable in polynomial time.

1 Introduction

The classical model-checking task is to verify whether a given formal system
satisfies a property usually expressed in some temporal logic [19, 66]. Much
effort has been devoted to enriching classical yes/no answers of model checkers
with useful diagnostic information. If the system does not meet the prescribed
condition, many model checkers produce counterexample traces [21] that can
further be investigated in order to localize precisely where the error lies or how far
the trace is from satisfying the formula [8, 73, 37, 69, 35, 36]. However, realistic
system models can usually produce errors for a variety of reasons so that more
diverse analysis techniques are required. In the case of a positive model-checking
result, coverage estimation aims at determining which parts of the system are
essential to ensure satisfaction [45, 16, 18, 17], and vacuity detection analyzes
whether it is due to some unintended, trivial behavior [12, 54, 65].

In this paper we tackle the explication of the behavior of transition systems
through novel notions of cause–effect relationships. Both cause and effect are
represented as subsets of the state space of the transition system, and formulas
in linear temporal logic (LTL, [64]) are used to express the principles of necessity
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and sufficiency in causal reasoning. A necessary cause is a state set that neces-
sarily needs to be passed before reaching the effect set. A sufficient cause is a
state set where every extension of a path reaching that set eventually sees an
effect state. Therefore, necessary and sufficient causes provide orthogonal views
on causality in operational systems. To estimate the explanatory power of such
causes and determine “good causes”, we exploit counterbalances on these orthog-
onal views: We determine necessary causes with maximal degree of sufficiency
and sufficient causes with maximal degree of necessity. In order to admit use-case
specific quality criteria for necessary causes, a rather general weight-based ap-
proach is finally presented. Weight-minimal necessary causes in this framework
can be computed in polynomial time via a reduction to a min-cut problem in
weighted graphs.

Despite being loosely inspired by philosophical theories of causation, the the-
ory put forth in this paper concentrates on formal operational system models
and does not transcend the borders of computer science. There have been philo-
sophical attempts to unterstand causality in terms of necessity and sufficiency
[59, 60, 71, 31]. Perhaps most elaborate in this direction is the INUS condi-
tion (“insufficient but necessary part of a condition which is itself unnecessary
but sufficient”) [59] that is closely related to the NESS test (necessary element
of sufficient subset) from jurisprudence [42, 72]. Our contributions are in some
sense also orthogonal to Halpern and Pearl’s actual causality, the perhaps most
influential instance of causality in the computer science community [40, 41, 39].
Halpern and Pearl express causal dependencies in structural equation models
[63, 29, 30, 38] and employ the counterfactuality principle that has a rich his-
tory in philosophical theories of causal reasoning [46, 47, 58]. Counterfactuality
proclaims to consider alternative worlds in which the cause has not occurred
and then check whether the effect still happened. To what extend necessity,
sufficiency, counterfactuality, and conditionality etc. relate to each other and
emerge to meaningful notions of causality is a matter of ongoing debate.

Related Work. Notions of causality inspired by Halpern and Pearl’s actual
causes have been employed in the verification landscape to analyze counterex-
ample traces for temporal logic specifications in transition systems [11], LTL
model checking [57, 10, 52, 13], concurrent interacting programs [23], and timed
systems [53]. To deal with the limited expressive power of propositional struc-
tural equation models, Hopkins and Pearl [44] introduced a notion of actual
causality defined in the framework of the situation calculus [68]. This line of
work has recently been picked up again [9, 48]. Causal reasoning in component-
based systems [32, 33, 34] and causality-based notions on responsibility [14] have
also been considered in the model-checking community [15, 61, 26].

Rather than defining cause–effect relationships within a system, there are
also approaches to use causal reasoning as a basis for verification algorithms
on transition systems [55, 56] and two-player reachability games [2]. From a
conceptual viewpoint, the latter article defines necessary and sufficient subgoals
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in the same spirit as our formalization of necessary and sufficient causes (which,
nevertheless, serve a different purpose there).

Recently, notions of causality have been considered in the realm of stochastic
operational systems. Based on the probability-raising principle [67], Kleinberg
and Mishra [50, 51, 49] presented an approach towards causal inference in time
series modeled as Markov chains. This has recently sparked novel probabilistic
causality notions [4, 5], including notions of precision and recall that are closely
connected to our notion of degrees of sufficiency and necessity [5]. Probabilistic
causation has also been expressed in terms of hyperproperties [1, 25].

Finally, the survey article [3] exhibits how the notion of causality entered and
influenced the verification landscape over the course of the past two decades.

2 Preliminaries

In the sequel, we briefly present our notation regarding transition systems,
Markov chains, and linear temporal logic (LTL). For more details, see standard
textbooks on systems modeling and verification [6].

A transition system T is a tuple (S,R, I) comprising a finite set of states
S, a transition relation R ⊆ S × S, and a set of initial states I ⊆ S. A state
that does not have any outgoing transition is called terminal. A path π in T is a
sequence of states s0s1 . . . such that s0 ∈ I and (si, si+1) ∈ R for all appropriate
i and where π is either infinite or ends in a terminal state. A state s ∈ S is
called reachable if there is a path that contains s. We assume that all states in
a transition system are reachable.

A Markov chain M is a tuple (S,P, ι) comprising a finite set of states S, a
transition probability functionP : S×S → [0, 1] where we require

∑
s′∈S P(s, s′) ∈

{0, 1} for all s ∈ S, and an initial state distribution ι : S → [0, 1] satisfying∑
s∈S ι(s) = 1. We say that a state s is terminal if

∑
s′∈S P(s, s′) = 0. A path

π in M is a state sequence s0s1 . . . such that ι(s0) > 0 and P(si, si+1) > 0
for all appropriate i, and π is either infinite or ends in a terminal state. The
σ-algebra of the probability space over sets of paths of M is generated by
cylinder sets Cyl(π̂) comprising all path extensions of path prefixes π̂. The
probability measure PrM on paths of M is induced by PrM

(
Cyl(s0 . . . sn)

)
=

ι(s0) ·P(s0, s1) · . . . ·P(sn−1, sn) [6, Chapter 10]. We write Prs for the probability
measure that arises for M with ι(s) = 1.

A formula in linear temporal logic (LTL) over a set AP of atomic propositions
is formed according to the following grammar

φ ::= true | a | φ ∧ φ | ¬φ | ⃝φ | φ U φ

where a ∈ AP. In this paper, we consider LTL over sets of states as atomic
propositions with the intended meaning that the atomic proposition A holds in a
state s iff s ∈ A. We use the standard syntactic derivations φ∨ψ ≡ ¬(¬φ∧¬ψ),
φ → ψ ≡ ¬φ ∨ ψ, ♢φ ≡ true U φ (“eventually”), □φ ≡ ¬♢¬φ (“always”),
φW ψ ≡ □φ ∨ φ U ψ (“weak until”) and φ R ψ ≡ ¬(¬φ U ¬ψ) (“release”).
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The semantics of LTL over sequences of atomic proposition sets is defined
the standard way (see, e.g., [6]). For example, a path π = s0s1 . . . satisfies φRψ,
denoted by π |= φ R ψ, iff there is a position k ∈ N such that sisi+1 . . . satisfies
ψ for i ≤ k and sksk+1 . . . satisfies φ. A transition system T is said to satisfy
an LTL formula φ, denoted by T |= φ, if all paths π of T satisfy φ. We write
T , s |= φ in case T satisfies φ under the assumption that I = {s} is the only
initial state of T . The set of states satisfying a formula φ in T is denoted by
SatT (φ) = {s ∈ S | T , s |= φ}, or simply Sat(φ) if T is clear from the context.

3 Necessary and Sufficient Causes

In this section, we define two notions of causes in transition systems, namely
necessary and sufficient causes. Both notions lead to a binary relation on events,
stating that an event is a cause for an effect event. Here, we focus on reachability
events as causes and effects, such that they can be represented by sets of states.
Our focus is motivated by the fact that numerous properties can be expressed by
reachability properties on transition systems obtained by well-known automata-
theoretic transformations [43, 70, 22, 24].

3.1 Necessary Causes

Informally spoken, an event C is considered to be a necessary cause of an event
E whenever the presence of E necessarily implies the prior occurrence of C. The
presence of C, on the other hand, does not necessarily imply that E will occur.
This idea can be expressed formally using LTL formulas over state sets:

Definition 1 (Necessary cause). Let T = (S,R, I) be a transition system
and let C,E ⊆ S be sets of states. We say that C is a necessary cause for E,
denoted by C ≺nec E, if E is non-empty and

T |= C R ¬E (≡ □¬E ∨
(
¬E U (¬E ∧ C)

)
).

The formula C R¬E is fulfilled whenever E is not reached before reaching C. In
particular, there needs to be at least one transition between reaching C and E.

Note that if the set E consists only of terminal states, i.e., states without any
outgoing transitions, and C and E are disjoint, then C is a necessary cause of E
iff T |= ♢E → ♢C. The set I of initial states is a trivial necessary cause for any
effect E ⊆ S if its intersection with the effect states E is empty. For any effect
E not containing an initial state, it is thus clear that necessary causes always
exist. Saying that the set of initial states is a necessary cause, however, does of
course not carry much explanatory information.

Example 1. Consider the transition system T depicted in Figure 1. We are in-
terested in necessary causes for the effect E = {e}. Any set containing the initial
state s0 is trivially a necessary cause. More interesting are necessary causes that
do not contain s0. There are two such causes containing two states: C1 = {a1, b}
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Fig. 1. The transition system T for Example 1.

and C2 = {a2, b}. C1 occurs at least as early as C2 on all paths. Nevertheless,
C1 ≺nec C2 does not hold since we required causes to occur strictly before their
effects: when entering state b the events to reach C1 and C2 occur simultaneously.

In order to compare simultaneously occurring causes for the same effect, we
introduce a second type of ‘necessary cause’-relation between sets of states that
we call necessary quasi-cause in the following definition. For a quasi-cause, we
do not require that to occur strictly before its effect.

Definition 2 (Necessary quasi-cause). Let T = (S,R, I) be a transition
system and let C,E ⊆ S be sets of states. We say that C is a necessary quasi-
cause for E, denoted by C ⪯q

nec E, if E is non-empty and

T |= ¬EW C (≡ □¬E ∨ (¬E U C)).

For a quasi-cause, we only require non-strict temporal priority. Hence, on
any path reaching an effect E, it is sufficient if the quasi-cause C is reached
simultaneously with E. Returning to Example 1, we therefore have C1 ⪯q

nec C2

even though C1 ≺nec C2 does not hold. As indicated by the name quasi-cause,
we do not claim that this notion itself constitutes a meaningful cause–effect
relationship. For example, any effect set provides a quasi-cause for itself. The
notion is useful, however, when comparing different causes for the same effect.

We now establish first fundamental properties of the relations ≺nec and ⪯q
nec:

Lemma 1. Let T = (S,R, I) be a transition system. Then:

(1) The relation ≺nec is a strict partial order (irreflexive, asymmetric, and tran-
sitive) on the powerset of the state space S of T .

(2) The relation ⪯q
nec is a preorder (reflexive and transitive) on the powerset of

the state space S of T .
(3) For all C,E ⊆ S, we have that C ≺nec E implies C ⪯q

nec E.
(4) For all C1, C2, E ⊆ S, if C1 ⪯q

nec C2 and C2 ≺nec E, then C1 ≺nec E.
(5) For all C,E1, E2 ⊆ S, if C ≺nec E1 and E1 ⪯q

nec E2, then C ≺nec E2.

Proof. Ad (1): ≺nec is irreflexive since C R ¬C does not hold on paths that
reach C (recall that ¬C still has to hold when C releases the requirement of
¬C to hold) and every state of T is assumed to be reachable in T . Similarly
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asymmetry of ≺nec is clear as any path π with π |= C R ¬E cannot satisfy
E R ¬C. For transitivity, assume that A ≺nec B and B ≺nec C for three sets A,
B, and C of states of T . To show T |= AR¬C, let π = s0s1s2 . . . be a path in T .
If π |= □¬C, we have π |= AR¬C. So, suppose that π |= ♢C. Let si be the first
state in π that is in C. As T |= B R ¬C, there is a position j < i with sj ∈ B.
Analogously, there is k < j such that sk ∈ A. So, π |= AR¬C. We conclude that
≺nec is transitive.

Ad (2): As for any set of states A the formula ¬AWA is a tautology, reflexivity
of ⪯q

nec is clear. Transitivity is shown analogously to the proof of transitivity
above, where the strict inequalities on the positions i, j, and k are replaced by
non-strict ones.

Ad (3): This is a direct consequence of C R ¬E ≡ □¬E ∨
(
¬E U (¬E ∧ C)

)
entailing ¬EW C ≡ □¬E ∨ (¬E U C).

Ad (4) and (5): The proofs are again analogous to the proof of transitivity
above, where this time one of the strict inequalities between positions is replaced
by a non-strict one. ⊓⊔

These definitions and basic properties of the two relations will help us to find
“good causes” later on. There is no gold standard what precisely constitutes
a good necessary cause. One common approach also within other notions of
causality is to only consider minimal representatives as causes [39, 26], i.e., events
where removing some part leads to loosing the property of being a cause. In our
setting, necessary causes may contain redundant states that do not affect the
causal relationships to potential effect sets and could be removed towards more
concise causes. To provide an intuition, consider again the transition system T
depicted in Figure 1. The necessary cause C3 = {a1, a2, b} contains the redundant
state a2. This state can only be reached if the set C3 is visited already before
in state a1. As only the first visit to the set is relevant in the relations ≺nec

and ⪯q
nec, the fact that a2 belongs to C3 does not play a role at all for causal

relationships. To remove such redundant states, we define the following pruning
of sets of states.

Definition 3 (Pruning of state sets). Let T = (S,R, I) be a transition sys-
tem and let A ⊆ S be a set of states. We define the pruning ⌊A⌋ of A by

⌊A⌋ = { a ∈ A | there is a path π in T with π |= ¬A U a }.

Recall that paths always start in an initial state of the transition system. The
pruning ⌊A⌋ includes precisely those states in A that are reachable without
previously seeing A. It satisfies the following properties related to the necessary
(quasi-)cause relations defined above.

Lemma 2. Let T = (S,R, I) be a transition system.

(1) For all A ⊆ S, we have A ⪯q
nec ⌊A⌋ and ⌊A⌋ ⪯q

nec A.
(2) For A,B ⊆ S, we have that A ⪯q

nec B and B ⪯q
nec A implies ⌊A⌋ = ⌊B⌋.

(3) For all C,E ⊆ S with C ≺nec E, we have C ≺nec ⌊E⌋.
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Proof. Ad (1): First, we will show T |= (¬A) W ⌊A⌋ which is equivalent to
T |= ♢A→ (¬A)U⌊A⌋. Let π = s0s1 . . . be a path in T that satisfies ♢A and let
i ∈ N be the first position such that si ∈ A. Then, by definition of ⌊A⌋, we have
si ∈ ⌊A⌋. This shows π |= (¬A) U ⌊A⌋. In the other direction, T |= (¬⌊A⌋)W A
holds because ⌊A⌋ ⊆ A.

Ad (2): Assume A ⪯q
nec B and B ⪯q

nec A and suppose towards a contradiction
that ⌊A⌋ ≠ ⌊B⌋. Assume w.l.o.g. that there is an a ∈ ⌊A⌋\⌊B⌋. By the definition
of ⌊A⌋, there is a path π = s0 s1 . . . sn . . . with s0 ∈ I and sn = a such that si ̸∈ A
for all i < n. As A ⪯q

nec B, it follows that also si ̸∈ B for all i < n. Since a ̸∈ ⌊B⌋,
also a ̸∈ B since otherwise the path π would witness that a also belongs to ⌊B⌋.
Thus, π ̸|= (¬A)W B and hence B ̸⪯q

nec A, which yields a contradiction.
Ad (3): The claim follows from E ⪯q

nec ⌊E⌋ by (1) and Lemma 1(5). ⊓⊔

The preorder ⪯q
nec induces an equivalence relation defined by

A ∼ B iff A ⪯q
nec B and B ⪯q

nec A.

Statements (1) and (2) of Lemma 2 tell us that in each of these equivalence
classes, there is exactly one pruned set. Choosing the respective pruned set
as representative for each equivalence class, we obtain that ⪯q

nec is a partial
order (reflexive, transitive, and anti-symmetric) on the set of pruned subsets
of S. In the light of Lemma 1 and Lemma 2(3), we can conclude that for sets
C1, C2, E1, E2 ⊆ S with C1 ∼ C2 and E1 ∼ E2, we have

C1 ≺nec E1 iff C2 ≺nec E2.

In words, ≺nec is well-defined on the equivalence classes induced by ⪯q
nec and it

is therefore reasonable to restrict ourselves to the canonical representatives for
necessary causes in terms of pruned sets.

3.2 Sufficient Causes

Intuitively, a sufficient cause C for an event E means that the presence of C nec-
essarily implies the subsequent occurrence of E. This intuition can be formalized
using LTL formulas over state sets:

Definition 4 (Sufficient cause). Let T = (S,R, I) be a transition system. A
non-empty set C ⊆ S is a sufficient cause for E ⊆ S if

T |= □
(
C → ⃝♢E

)
.

The formula basically states that whenever we see a state c ∈ C we will
also see E at some point in the future. Note that if E comprises terminal states
only and C and E are disjoint, the above characterization of sufficient causes is
equivalent to ♢C → ♢E.

Example 2. Consider the transition system depicted in Figure 2, modeling a
coffee machine that has a defect and sometimes only produces hot water instead
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idle

working coffeehot water

get coffeeget hot water
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ττ

Fig. 2. A defect coffee machine that sometimes produces hot water

idle

defect working coffeehot water

get coffeeget hot water

1e 2× 50ct

ττ

Fig. 3. A refined transition system for the defect coffee machine

of delicious coffee. We consider the effect E = {coffee}. Within this model, there
are no sufficient causes for E since it is unclear how the non-deterministic choice
in the working state is resolved. However, both C1 = {working} and C2 = {idle}
are necessary causes for E.

Suppose now that we have additional knowledge about the defect and can
refine the transition system model towards the one in Figure 3. Here, we assume
that a person with strong desire of getting more insights about the defect, let
us call him Frits, figured out a trick: when using two coins instead of one, the
defect does not occur and the machine always delivers coffee. For the effect
E = {coffee}, we then still have C1 = {working} and C2 = {idle} as necessary
causes. In this model, C1 is additionally a sufficient cause since all paths that
visit C1 will visit E afterwards eventually.

In analogy to necessary causes, we can observe sufficient causes are transitive:

Lemma 3 (Transitivity of sufficient causes.). Let T = (S,R, I) be a tran-
sition system and C,W,E ⊆ S. If C is a sufficient cause for W and W is a
sufficient cause for E, then C is a sufficient cause for E.

Proof. Assume that C is a sufficient cause for W, which in turn is a sufficient
cause for E. Let π = s0 s1 . . . be a path in T . Then, since T |= □(C → ⃝♢W )
we have for each i ∈ N with si ∈ C that there is j > i with sj ∈W . Likewise, by
T |= □(W → ⃝♢E) for each j ∈ N with sj ∈W there is k > j with sk ∈ E. We
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conclude that π |= □(C → ⃝♢E) for all paths π in T . Hence, C is a sufficient
cause for E. ⊓⊔

Since all states in a transition system T are assumed to be reachable, a set
C is a sufficient cause for E in T iff the sufficiency condition holds for all states
included in C. That is, for all a ∈ C the formula □(a → ⃝♢E) holds in T .
Equivalently, a set C ⊆ S is a sufficient cause for E iff ∅ ̸= C ⊆ SatT

(
⃝♢E

)
.

Therefore, existence of a sufficient cause can be checked in polynomial time with
standard model-checking algorithms [20, 6].

The satisfaction set of ⃝♢E is consequently the inclusion-maximal sufficient
cause for the effect E in T . This set, however, might be very large and does
not necessarily point to “good causes” for the effect. To this end, we define
the canonical sufficient cause as CE

c = ⌊SatT
(
⃝♢E

)
⌋, i.e., the set of all states

in SatT
(
⃝♢E

)
that are either initial or are reachable from some initial state

by visiting only non-sufficient states. The name “canonical” sufficient cause is
justified by the following observation:

Proposition 1. Let T and E be as above. The canonical sufficient cause CE
c is

the unique pruned and ⪯q
nec-least sufficient cause for E.

Proof. By Lemma 1(1), we know that CE
c ⪯q

nec SatT
(
⃝♢E

)
, and therefore also

CE
c ⪯q

nec C for all C ⊆ SatT
(
⃝♢E

)
by the definition of ⪯q

nec. But the sufficient

causes of E are exactly the non-empty subsets of SatT
(
⃝♢E

)
. Thus, the canon-

ical sufficient cause CE
c is a ⪯q

nec-least sufficient cause. By Lemma 2, we know
that there is only one pruned cause in the equivalence class (induced by ⪯q

nec)
of ⪯q

nec-least sufficient causes, rendering CE
c unique. ⊓⊔

While Proposition 1 already shows that CE
c is a distinguished sufficient cause,

we will see later on that it is also optimal with respect to other criteria, namely
the degree of necessity introduced in the next section.

4 Finding Good Causes

We have seen that causes may differ in their information they provide and their
ability to concisely explain reasons for the effect. For example, the set of initial
states is a necessary cause for any effect E that does not contain an initial state.
In this section, we introduce different ways to quantify the quality of a cause
and show how to find optimal causes with respect to the introduced quality
measures.

4.1 Degrees of Sufficiency and Necessity

The notions of sufficiency and necessity defined in the previous section are qual-
itative: either a set satisfies the corresponding criterion, or it does not. However,
one can think of situations where a set C is almost sufficient or necessary, e.g.,
that a very large part of the executions which see the effect set E are preceded
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by C in the case of necessity. To quantify how close a set is a necessary cause for
an effect (resp. a sufficient cause), we define degrees of necessity (resp. degree of
sufficiency). Here, we rely on the probability measure on paths that we obtain
by equipping the outgoing transitions from each state with a uniform probability
distribution. In particular, we are interested in the trade-off between sufficiency
and necessity and aim toward sufficient causes with a high degree of necessity,
and vice versa.

For the remainder of this section, let us fix a transition system T = (S,R, I)
and a non-empty effect set E ⊆ S. Then we can construct the Markov chain
MT ,E = (S,P, ι) as follows. For each transition (s, s′) ∈ R with s ̸∈ E, we have
P(s, s′) = 1/|Post(s)|, where Post(s) denotes the set of direct successors of s. For
all s, s′ ∈ S where (s, s′) ̸∈ R or s ∈ E, we set P(s, s′) = 0, i.e., all effect states
are terminal in MT ,E . Further, we set ι(s) = 1/|I| for all s ∈ I. In the following,
we denote by Pr the probability measure PrMT ,E

on measurable sets of paths
of MT ,E .

The degree of sufficiency of a non-empty candidate cause C ⊆ S\E intuitively
provides a measure how many of the paths that see C will also see E. It is defined
as a conditional probability in the following way:

suff-deg(C,E) = Pr(♢E | ♢C) =
Pr(♢E ∧ ♢C)

Pr(♢C)

With a similar reasoning, the degree of necessity of C is defined as:

nec-deg(C,E) = Pr(♢C | ♢E) =
Pr(♢E ∧ ♢C)

Pr(♢E)

Note that these degrees can be computed in polynomial time by standard tech-
niques for computing conditional probabilities on Markov chains [7].

If C is a sufficient cause as defined above, then its degree of sufficiency clearly
is 1. The analogous statement holds for necessary causes, but the reverse direc-
tions do not hold in general. Since multiple sufficient causes may exist, it makes
sense to look for those with maximal degree of necessity. In case C is a sufficient
cause, the above expression for nec-deg(C,E) simplifies to

nec-deg(C,E) =
Pr(♢C)
Pr(♢E)

(∗)

as the formula ♢C → ♢E holds in MT ,E with E comprising terminal states only
by construction. Analogously, if C is a necessary cause we have

suff-deg(C,E) =
Pr(♢E)

Pr(♢C)
(∗∗)

The above definitions raise the question of how to find a sufficient cause with
maximal degree of necessity, or, a necessary cause with maximal degree of suf-
ficiency. Observe that causes that are sufficient and necessary may not exist in
general. The following lemma connects the degrees of necessity and sufficiency
to the necessary quasi-cause relation ⪯q

nec.
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Lemma 4. Let C1, C2 ⊆ S be two necessary causes for E, i.e., C1 ≺nec E and
C2 ≺nec E. Then, C1 ⪯q

nec C2 implies that suff-deg(C1, E) ≤ suff-deg(C2, E).
Let D1, D2 ⊆ S be two sufficient causes for E. Then, D1 ⪯q

nec D2 implies
that nec-deg(D1, E) ≥ nec-deg(D2, E).

Proof. For any sets A1, A2 ⊆ S with A1 ⪯q
nec A2, we have that T |= ♢A2 → ♢A1.

So, Pr(♢A1) ≥ Pr(♢A2). Applied to the necessary causes C1 and C2, we conclude
the claim due to equation (∗∗). For the sufficient causes D1 and D2, the claim
follows analogously using equation (∗). ⊓⊔

Sufficient causes with maximal degree of necessity. The story of how
to find a sufficient cause with maximal degree of necessity is quickly told: By
Lemma 4, we know that ⪯q

nec-least sufficient causes have maximal degree of
necessity. In Proposition 1, we have seen that the canonical sufficient cause
CE

c = ⌊SatT
(
⃝♢E

)
⌋, is a ⪯q

nec-least sufficient cause. We conclude:

Proposition 2. Let T = (S,R, I) a transition system and E ⊆ S. The canon-
ical sufficient cause CE

c has maximal degree of necessity among all sufficient
causes for E.

Necessary causes with maximal degree of sufficiency. While sufficient
causes are always non-empty subsets of an LTL satisfaction set, this is not the
case for necessary causes. Indeed, the set of all states S is always a necessary
cause for any effect that is disjoint from the initial states but not all state sets
have to be a necessary cause. Following the definition of a canonical sufficient
cause suggests considering the pruned maximal necessary cause as a candidate.
However, in the case above, I = ⌊S⌋, which does not attain the maximal degree
of sufficiency among all necessary causes (on the contrary, it achieves the mini-
mal degree of sufficiency). A necessary cause with maximal degree of sufficiency
is the direct-predecessor cause: It is denoted by CE

dp = {s ∈ S | there is e ∈
E such that (s, e) ∈ R} and comprises all those states that have at least one
transition to E.

Proposition 3. Let T = (S,R, I) a transition system and E ⊆ S\I. The direct-
predecessor cause CE

dp is a necessary cause that achieves the maximal degree of
sufficiency among all necessary causes for E.

Proof. Clearly, CE
dp is a necessary cause by definition, since for all paths π in T

that visit E we clearly have π |= ¬E U (¬E ∧ CE
dp) (recall that E ∩ I = ∅). We

show that Pr(♢CE
dp) ≤ Pr(♢C) for every necessary cause C ⊆ S by proving

{π | π |= ♢CE
dp} ⊆ {π | π |= ♢C}.

Let π = s0s1 . . . be a path in T with π |= ♢CE
dp and let i ∈ N be the smallest

position such that si ∈ CE
dp. Then clearly sj ̸∈ E for all j ≤ i and there is a path

π′ = s0s1 . . . sis
′
i+1 . . . where s

′
i+1 ∈ E and thus, π′ |= ¬E U (¬E ∧ C) as C is a

necessary cause. But then there is k ≤ i with sk ∈ C and thus π |= ♢C. ⊓⊔
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The motivation for pruned necessary causes is also applicable to direct-
predecessor causes, asking for the “earliest” necessary cause C that has the
same degree of sufficiency as CE

dp. To this end, we consider the set of states

CE
♢ dp = {s ∈ S | Prs(♢CE

dp) = 1}, which is a necessary cause due to CE
dp ⊆ CE

♢ dp.

By Lemma 1, its pruned set is also a necessary cause, i.e. ⌊CE
♢ dp⌋ ≺nec E. In

MT ,E we have Pr(♢⌊CE
♢ dp⌋) ≤ Pr(♢CE

♢ dp) = Pr(♢CE
dp). On the other hand,

⌊CE
♢ dp⌋ ⪯q

nec CE
♢ dp (again by Lemma 1) implies Pr(♢CE

dp) ≤ Pr(♢⌊CE
♢ dp⌋).

Therefore, we have Pr(♢CE
dp) = Pr(♢⌊CE

♢ dp⌋) and hence the degrees of suffi-

ciency of CE
dp and ⌊CE

♢ dp⌋ are the same.

Moreover, ⌊CE
♢ dp⌋ is a necessary quasi-cause for all necessary causes of E

that achieve the same degree of sufficiency:

Proposition 4. Let T = (S,R, I) a transition system and E ⊆ S \ I. For all
necessary causes C of E that satisfy suff-deg(C,E) = suff-deg(CE

dp, E) we have

⌊CE
♢ dp⌋ ⪯q

nec C.

Proof. It suffices to show C ⊆ CE
♢ dp. Since C is a necessary cause for E, we can

apply the same argumentation as in the proof of Proposition 3, showing that

{π | π |= ♢(C ∧ ♢CE
dp)} = {π | π |= ♢CE

dp} ⊆ {π | π |= ♢C}.

Due to suff-deg(C,E) = suff-deg(CE
dp, E), we have Pr(♢C) = Pr(♢CE

dp) and

thus, {π | π |= ♢(C ∧ ♢CE
dp)} = {π | π |= ♢C}. Now fix some arbitrary s ∈ C.

Then, every path that visits s has to visit CE
dp eventually afterwards. Thus,

Prs(♢CE
dp) = 1, which is equivalent to s ∈ CE

♢ dp, leading to C ⊆ CE
♢ dp. ⊓⊔

This leads to a ⪯q
nec-least necessary cause ⌊CE

♢ dp⌋ with maximal degree of
sufficiency that can be computed in polynomial time by standard methods.

4.2 Weight-minimal Necessary Causes

The previous section showed how to determine necessary causes with maximal
degree of sufficiency and⪯q

nec-least ones among them. We now describe a different
technique to find optimal necessary causes with respect to a generic optimization
criterion, employing a natural connection to minimal cuts from flow networks.

Let T = (S,R, I) be a transition system and A,B ⊆ S be two sets of states.
We call X ⊆ S \B an AB-separator if every finite path through T that starts in
A and ends in B sees a vertex in X. The following observation follows directly
from the definition of necessary causes.

Proposition 5. The necessary causes for E which do not intersect E in T are
exactly the IE-separators of T .

Let us augment T by a weight function w : S → Q≥0. The weight of a set X ⊆ S
is defined to be w(X) =

∑
v∈X w(v). In the presence of such a weight function,

it makes sense to ask for weight-minimal AB-separators in T , for some given
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A,B ⊆ S. Via a polynomial reduction to the problem of computing minimal
cuts, we get the following result.1

Proposition 6. Weight-minimal AB-separators can be computed in polynomial
time.

Proof. We reduce the problem of computing minimal AB-separators to the prob-
lem of computing a weight-minimal s-t-cut. An s-t-cut of T = (S,R, I) is a par-
tition S1, S2 of S such that s ∈ S1, t ∈ S2. Let w : R → Q be a weight function
on the edges of T . The bridging edges of an s-t-cut S1, S2 are defined to be
br(S1, S2) = R ∩ (S1 × S2), and its weight is

∑
(u,v)∈br(S1,S2)

w(u, v). Weight-

minimal cuts can be computed in polynomial time [62].

We show how to reduce the problem of computing weight-minimal AB-
separators to the problem of computing weight-minimal cuts. Let T = (S,R, I),
w, A,B ⊆ S be an instance of the weight-minimal AB-separator problem. We
may assume that A ∩ B = ∅ and that B is a singleton set {b}. If A ∩ B ̸= ∅,
then there are no AB-separators by definition. If B is not singleton, we can first
collapse all states in B into a single state b, and let B = {b}. This transformation
preserves AB-separators and their weights.

Now we transform the transition system T as follows. Define T ′ = (S ∪ S′ ∪
{a}, R′, I), where S′ = {s′ | s ∈ S}, and with edges

v → v′ for all v ∈ S (1)

v′ → u for all (v, u) ∈ R (2)

a→ v for all v ∈ A (3)

Consider the weight function w′ : R′ → Q≥0 defined by w′(v, v′) = w(v) for all
v ∈ S \ B and w′(x, y) = w(S) + 1 for all other edges (x, y) of T ′. Note that
these transformations are all possible in polynomial time.

Each AB-separator X in T induces an a-b-cut in T ′ as follows. Take S1 to
be the union of X and the states of T ′ reachable from a without seeing X. As
X is an AB-separator in T , the partition (S1, (S ∪ S′) \ S1) forms an a-b-cut in
T ′. Furthermore, as the outgoing edges of S1 are exactly {(u, u′) | u ∈ X}, the
weight of this cut is w(X).

Conversely, every a-b-cut (S1, S2) in T ′ satisfying br(S1, S2) ⊆ {(u, u′) |
u ∈ S \ B} induces the AB-separator X = {u ∈ S | (u, u′) ∈ br(S1, S2)}
with the same weight. Finally, any a-b-cut (S1, S2) in T ′ which does not satisfy
br(S1, S2) ⊆ {(u, u′) | u ∈ S \ B} cannot be weight-minimal, as it has larger
weight than any cut with this property. The a-b-cut induced by the set A ∪ {a}
has this property, and hence such an a-b-cut exists (this uses our assumption
A ∩ B = ∅). Hence, a weight-minimal a-b-cut in T ′ induces a weight-minimal
AB-separator in T . ⊓⊔
1 The problem of finding balanced vertex separators, as studied by Feige et al. [28, 27],
is NP-complete and differs from the one we study in that it requires that the vertex
separator partitions the graph into approximately equally sized components.
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Fig. 4. Transition system T1 from
Example 3
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Fig. 5. Transition system T2 from
Example 4

This gives us a tool to compute weight-optimal necessary causes in polyno-
mial time. In the following, we consider two natural choices for weight functions
which lead to different notions of optimality for necessary causes.

State-minimal necessary causes. Let T = (S,R, I) be a transition system as
above and E ⊆ S a set of states. Consider the weight function w : S → Q≥0

where w(s) = 1 for all s ∈ S. Then, a weight-minimal necessary cause with
respect to w is a necessary cause C such that |C| is minimal among all necessary
causes. By the above observations, such a cause can be computed in polynomial
time.

If |I| = 1, then I itself is always a state-minimal necessary cause, which ren-
ders the optimization problem trivial. However, I has the worst possible degree
of sufficiency among all necessary causes due to Pr(♢I) = 1 in the corresponding
Markov chain MT ,E . The following paragraph considers a weight function that
aims to achieve a trade-off between the size of a necessary cause and its degree
of sufficiency.

A trade-off between size and degree of sufficiency. Consider the weight function
w defined by w(v) = Pr(♢v), again with respect the probability measure in the
Markov chain MT ,E . A weight-minimal necessary cause with respect to this
weight function is a necessary cause X minimizing

w(X) =
∑
v∈X

Pr(♢v). (�)

Recall that the degree of sufficiency of X is given by suff-deg(X,E) = Pr(♢E)
Pr(♢X) if

X is a necessary cause. We have w(X) ≥ Pr(♢X), and therefore minimizing the
weight encourages necessary causes with high degree of sufficiency. At the same
time, the number of states corresponds to the number of summands in w(X),
and hence few states are also encouraged.

Example 3. Consider the transition system T1 from Figure 4, where I = {i1, i2}
are the initial states and consider E = {e} as the effect. Then both C = {c}
and D = {d} are necessary causes of minimal size |C| = |D| = 1, as removing
these states would separate I and E. This means that under the state-counting
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weight function, both C and D are weight-minimal necessary causes. However,
D has a higher degree of sufficiency and would thus be optimal for both size
and degree of sufficiency. Specifically, we have Pr(♢C) = 1 and Pr(♢D) = 1/2.
Hence, suff-deg(C,E) = Pr(♢E) = 1/4, and suff-deg(D,E) = 1/2. Under the
weight function defined in (†), only D is optimal, since w(C) = Pr(♢C) = 1 and
w(D) = Pr(♢D) = 1/2.

Example 4. Consider the transition system T2 from Figure 5, with initial states
I = {c} and the effect E = {e}. Then I and D = {d1, d2} are the only inclusion-
minimal necessary causes. According to the weight function defined in (†) we
have w(I) = 1 and w(D) = 5

2(n+2) . For n = 0 we have w(D) = 5/4 > 1 = w(I)

and thus, I would be trade-off optimal. On the other hand, for n > 0 we have
w(D) < 1 = w(I), which turns D into the trade-off optimal necessary cause.
Intuitively, increasing n makes I less sufficient, as it increases the set of paths
that start in c but never reach E.

5 Conclusion

We have formalized well-known notions of necessity and sufficiency in the context
of transition systems using temporal logic formulas over state sets that stand for
causes and effects. Based on these formalizations, we addressed several trade-
offs between necessity and sufficiency and presented three optimality criteria that
differ in their properties with respect to conciseness and explainability: the degree
of necessity, the degree of sufficiency, and through state weights. Causes that
maximize the former two were explicitly characterized, and a polynomial-time
algorithm for the computation of weight-optimal causes was described relying
on known algorithms to determine minimal cuts in flow networks. Which notion
of causality is appropriate to identify the reason for an effect, e.g., such that the
imaginary person Frits from Example 2 can fix the broken coffee machine, highly
depends on the considered system and it might be required to consider all our
notions of causality to draw a conclusion.

In practice, also state sets with high degree of necessity and sufficiency might
be interesting to consider also when they are neither sufficient nor necessary
causes. In this direction it is promising to investigate trade-off values between
the two degrees such as the f-score from statistics, as done for probability-raising
causes in MDPs [5]. In future work we also plan to examine relaxations of the
cause conditions studied here, following the more articulate INUS condition [59]
or the NESS test [42, 72].
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